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Abstract

Background: Convolutional neural networks (CNNs) are a type of artificial intelligence that shows promise as a diagnostic aid
for skin cancer. However, the majority are trained using retrospective image data sets with varying image capture standardization.

Objective: The aim of our study was to use CNN models with the same architecture—trained on image sets acquired with either
the same image capture device and technique (standardized) or with varied devices and capture techniques (nonstandardized)—and
test variability in performance when classifying skin cancer images in different populations.

Methods: In all, 3 CNNs with the same architecture were trained. CNN nonstandardized (CNN-NS) was trained on 25,331
images taken from the International Skin Imaging Collaboration (ISIC) using different image capture devices. CNN standardized
(CNN-S) was trained on 177,475 MoleMap images taken with the same capture device, and CNN standardized number 2 (CNN-S2)
was trained on a subset of 25,331 standardized MoleMap images (matched for number and classes of training images to CNN-NS).
These 3 models were then tested on 3 external test sets: 569 Danish images, the publicly available ISIC 2020 data set consisting
of 33,126 images, and The University of Queensland (UQ) data set of 422 images. Primary outcome measures were sensitivity,
specificity, and area under the receiver operating characteristic curve (AUROC). Teledermatology assessments available for the
Danish data set were used to determine model performance compared to teledermatologists.

Results: When tested on the 569 Danish images, CNN-S achieved an AUROC of 0.861 (95% CI 0.830-0.889) and CNN-S2
achieved an AUROC of 0.831 (95% CI 0.798-0.861; standardized models), with both outperforming CNN-NS (nonstandardized
model; P=.001 and P=.009, respectively), which achieved an AUROC of 0.759 (95% CI 0.722-0.794). When tested on 2 additional
data sets (ISIC 2020 and UQ), CNN-S (P<.001 and P<.001, respectively) and CNN-S2 (P=.08 and P=.35, respectively) still
outperformed CNN-NS. When the CNNs were matched to the mean sensitivity and specificity of the teledermatologists on the
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Danish data set, the models’ resultant sensitivities and specificities were surpassed by the teledermatologists. However, when
compared to CNN-S, the differences were not statistically significant (sensitivity: P=.10; specificity: P=.053). Performance across
all CNN models as well as teledermatologists was influenced by image quality.

Conclusions: CNNs trained on standardized images had improved performance and, therefore, greater generalizability in skin
cancer classification when applied to unseen data sets. This finding is an important consideration for future algorithm development,
regulation, and approval.

(JMIR Dermatol 2022;5(3):e35150) doi: 10.2196/35150
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Introduction 

Skin cancer (melanoma and keratinocyte cancer) is the most
common type of cancer in fair-skinned populations, with the
overall incidence and prevalence increasing worldwide [1]. In
an effort to improve current prevention and detection practices,
artificial intelligence (AI) has shown promise, at least in
experimental settings.

In recent years, advances in machine learning and deep learning
have led to increases in the research and exploration of potential
applications in dermatology [2-6]. These advancements have
led to the production of systems that can diagnose skin
conditions through image analysis. With the help of clinical and
dermoscopic images for training, convolutional neural networks
(CNNs) have been able to compete and even outperform
experienced dermatologists when diagnosing and classifying
skin cancer [7-11].

Although these models perform well, they are often tested on
images that they have already seen or come from the same data
set in which the models were trained on, leading to an inflation
in their performance [12]. When tested on externally sourced
images, the performance of these models is reduced
significantly, highlighting the models’ poor generalizability
[13].

Generalizability is an important factor that deserves careful
consideration when assessing dermatology models.
Generalizability refers to how well a model can apply the
concepts it has learned from the available training data and
implement these same concepts to data it has not seen before.

The method for collecting dermatology image data sets can be
defined as nonstandardized and standardized. Nonstandardized
image collection refers to images taken using multiple image
capture devices and techniques. This method exposes the model
to variation in image quality parameters, such as sharpness,
brightness, polarization, magnification, color, and distance from
lesion (for macroscopic images). Standardized image collection
refers to images taken with the same image capture device and
technique, resulting in a greater uniformity of images across a
data set. It is unknown the extent to which uniformity (or lack
thereof) of training images will affect the performance of the
resultant CNN model.

Dermatology image data sets are generally not standardized and
often collected retrospectively and contain images collected

with a variety of techniques and technologies. Theoretically,
this variety increases the adaptability of the model and its ability
to handle noisy and poorer quality data, thus increasing
generalizability. However, with standardized image data sets,
there is an expectation for greater consistency in image quality
and, therefore, greater performance of the model. When
considering the eventual implementation of a CNN model in a
clinical setting, it is vital that the model’s performance is
impacted minimally by changes to the environment and patient
demographic and variation in the presentation of disease.
Identifying the factors that affect generalizability will increase
the effectiveness of AI model implementation in practice. This
retrospective comparative study assessed the generalizability
of CNN models trained on standardized and nonstandardized
images.

Methods

Test Sets, Study Population, and Image Selection
In this study, we compared the performance of CNNs trained
on standardized and nonstandardized images when classifying
skin cancer as malignant or benign on 3 separate external data
sets.

Ethics Approval
This retrospective comparative study was approved by the
Monash University Human Ethics Committee (Project ID
28130).

Architecture and Training of CNN Models
In all, 3 CNN models with the same architecture were trained
on International Skin Imaging Collaboration (ISIC) 2019 [14-17]
and MoleMap (MoleMap NZ Limited) [2] data sets. Model
architecture used ImageNet pretrained ResNet-50 as a backbone
(Figure 1) combined with a transformer [18,19]. The ResNet-50
backbone was incorporated because of the trade-off between
accuracy and complexity. A transformer was also added to the
model to overcome the limitation of CNN in the context of
learning global images. The same 3 CNN models were then
additionally trained with a ResNet-18 backbone on either the
ISIC 2019 (CNN nonstandardized [CNN-NS]) or MoleMap
(CNN standardized [CNN-S] and CNN standardized number 2
[CNN-S2]) data sets.

CNN-NS was trained on 25,331 nonstandardized ISIC
dermoscopic images consisting of 8 skin conditions (Table 1).
We define nonstandardized images as images that are taken
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using multiple image capture technologies (Figure 2). CNN-S
was trained on 177,475 standardized, teledermatologist-verified,
clinical, and dermoscopic MoleMap images. This data set
includes a total of 65 skin conditions organized into a 3-level
hierarchical semantic tree (Table 1). This model was trained on
standardized images taken using the same camera (DermLite

FOTO System). CNN-S2 was trained on 25,331 standardized,
teledermatologist-verified, and dermoscopic MoleMap images
consisting of 8 skin conditions (Table 1). CNN-NS and CNN-S2
were trained on the same number of images and skin conditions,
only differing in the standardization of the images the models
were trained on.

Figure 1. ResNet-50 backbone used by the CNN-NS, CNN-S and CNN-S2 models. CNN: convolutional neural network; Conv: convolutional layers;
NS: nonstandardized; S: standardized.

Table 1. Number of relevant skin diseases the CNNa models were trained on.

CNN-S2d, nCNN-Sc, nCNN-NSb, nSkin disease

452211,7964522Melanoma

12,87566,89112,875Benign naevus

262422,1002624Benign keratosis

2394440239Dermatofibroma

332322,2923323Basal cell carcinoma

86740,440867Actinic keratosis and intraepithelial carcinoma

6287060628Squamous cell carcinoma

2532456253Vascular proliferations

25,331177,47525,331Total

aCNN: convolutional neural network.
bCNN-NS: CNN nonstandardized.
cCNN-S: CNN standardized.
dCNN-S2: CNN standardized number 2.
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Figure 2. Examples of standardized and nonstandardized images. Images A and B are nonstandardized images, taken using different image capture
devices. Images C and D are standardized images, taken using the same image capture device.

Assessment of CNN Performance
CNN performance was assessed using 3 separate test data sets
that were not used in model training.

Test Set 1
The Danish data set was provided by the Department of
Dermatology and Allergy Centre, Odense University Hospital
and collected between January 9 and October 31, 2018 [20].
General practitioners from 50 practices across southern Denmark
were trained for 1 hour with the image capture equipment
required to take images of lesions that are suspicious for
malignant melanoma and nonmelanoma skin cancer. A total of
600 images were collected from 519 Danish patients,
predominantly involving patients with Fitzpatrick skin types II
and III, were used. The “ground truth” diagnosis was achieved

by histopathology, follow-up, or a single face-to-face evaluation
(308 of the 600 lesions in the original data set were only seen
once face-to-face). Images containing clinical features that could
not be identified were removed from the data set, leaving 569
images. Lesion classification can be seen in Table 2.

The 569 images were taken using an iPhone 6 smartphone
(Apple Inc) and a handyscope (FotoFinder Systems GmbH)
with an overview, a close-up, and a dermoscopic image being
taken of the lesions.

In total, 4 dermatologists were involved in the face-to-face and
teledermatology evaluations of the 519 patients. The quality of
the images was rated as “poor,” “fair,” or “good” by 3 allocators.
Images were assigned to the different categories when there
was agreement between 2 or more allocators. 
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Table 2. Skin disease breakdown of test sets 1, 2, and 3.

Test set 3 (ISICb 2020 data set), nTest set 2 (UQa data set), nTest set 1 (Danish data set), nClassification, skin disease

Malignant

5842120Melanoma

N/Ac7280Basal cell carcinoma

N/A75Squamous cell carcinoma

N/A6550Actinic keratosis and intraepithelial

carcinoma

N/AN/A3Other malignancy

Benign

17964115Benign keratosis

N/A145Vascular proliferations

27,1702295Other

5193170156Benign naevus

33,126422569Total

aUQ: The University of Queensland.
bISIC: International Skin Imaging Collaboration.
cN/A: not applicable.

Test Set 2
The University of Queensland (UQ) data set contained 422
dermoscopic images provided by The University of Queensland,
Diamantina Institute, Dermatology Research Centre and
captured using the EOS Rebel T6i camera (Canon) and ATBM
master automated mole-mapping system (FotoFinder Systems
GmbH) between 2016 and 2020, with all lesions diagnosed
through histopathology (Table 2).

Test Set 3
The ISIC 2020 data set contained 33,126 dermoscopic images
provided by the ISIC and collected from 3 continents between
1998 and 2020 [21]. The 33,126 images in the ISIC 2020 test
set contained 59 images that overlap with the 25,331 images in
the ISIC 2019 data set used for the training of CNN-NS.

All 3 test sets were imbalanced, with the Danish data set
containing 411 benign and 158 malignant images, the UQ data
set containing 257 benign and 165 malignant images, and the
ISIC 2020 data set containing 27,131 benign and 5995 malignant
images, which is reflective of the breakdown seen in a clinical
setting. As the classification is binary, the imbalance had no
effect on the study. Lesion classification can be seen in Table
2.

Statistical Analysis
Statistical analysis was performed using Python software
(version 3.8.13; Python Software Foundation) and Stata
statistical software (version SE 17; StataCorp). The primary
outcome measures were sensitivity, specificity, and area under
the receiver operating characteristic curve (AUROC) for the
binary classification of lesions.

For each input image, the CNNs provided a score between 0
and 1 representing the probability that the input image is
malignant. In binary classifications, thresholds are applied to
the CNN models to establish the point at which an input image
is labeled malignant. This threshold is variable and allows for
the manipulation of the sensitivity and specificity of the models.

The performance was assessed by aligning the sensitivity and
specificity of the CNN models to the teledermatologists’ and
by calculating the AUROC. AUROC allows for the direct
comparison of different models regardless of the threshold
applied. Delong nonparametric test was used to evaluate the
statistical difference between AUROC values resulting from
the same data set. Additionally, 95% CI for the AUROC was
computed using 2000 stratified bootstrap replicates. McNemar
test was used to compare the sensitivities and specificities of
the CNN models. The 1-sample, 2-tailed t test was used to
compare the mean sensitivities and specificities of the
teledermatologists against the sensitivities and specificities of
the CNN models. P values <.05 were considered to have
statistically significant differences.

Results

Model Validation
During training, each model was internally validated on their
training images. The model trained on nonstandardized images
(CNN-NS) showed an AUROC of 0.950, whereas both models
trained on standardized images (CNN-S and CNN-S2) showed
an AUROC of 0.960 and 0.877, respectively (Figure 3).
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Figure 3. Receiver operating characteristic curves and AUROC for (A) the 3 CNN models during training and (B) the performances of the
teledermatologists and the 3 CNN models on the Danish test set. The receiver operating characteristic curves and AUROC of the CNN models in relation
to the sensitivity and 1-specificity of the teledermatologists were tested on the 569 Danish test images. The teledermatologists' performance was greater
than all of the CNN models. AUROC: area under the receiver operating characteristic curve; CNN: convolutional neural network; NS: nonstandardized;
S: standardized.

CNN Performance on Test Set 1
Each CNN model was tested on the externally sourced Danish
test set of 569 images. CNN-NS performance fell with an
AUROC of 0.759 (95% CI 0.714-0.802). CNN-S outperformed
CNN-NS when examined on the Danish test set, with an
AUROC of 0.861 (95% CI 0.828-0.894), showing significantly
greater generalizability than CNN-NS (P=.001; Figure 3).
CNN-S2, the standardized model trained on the same number
of images as CNN-NS, also outperformed the model, showing
an AUROC of 0.831 (95% CI 0.789-0.869; P=.009). Among
the standardized models, CNN-S had the greatest AUROC
(0.861 vs 0.831; P=.06).

CNN Performance on Test Set 2
When tested on the externally sourced UQ test set of 422
images, CNN-NS performed well with an AUROC of 0.850
(95% CI 0.812-0.887). CNN-S outperformed CNN-NS when
tested on the UQ image set, with an AUROC of 0.876 (95% CI
0.842-0.911), again showing greater generalizability than
CNN-NS (P=.08; Figure 4). CNN-S2 also achieved a slightly
greater AUROC (0.864, 95% CI 0.828-0.900) compared to
CNN-NS, though this was not statistically significant (P=.35).
Among the standardized models, CNN-S had the greatest
AUROC (0.8765 vs 0.8638), though the difference was not
statistically significant (P=.23).
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Figure 4. Receiver operating characteristic curves and AUROC for the 3 CNN models on The University of Queensland test set. AUROC: area under
the receiver operating characteristic curve; CNN: convolutional neural network; NS: nonstandardized; S: standardized.

CNN Performance on Test Set 3
When tested on the publicly available ISIC 2020 test set of
33,126 images, the performance of CNN-NS was reduced, with
an AUROC of 0.763 (95% CI 0.743-0.783). CNN-S significantly

outperformed CNN-NS when examined on the ISIC test set
(P<.001), with an AUROC of 0.828 (95% CI 0.812-0.843),
showing greater generalizability than CNN-NS (Figure 5).
CNN-S2 also significantly outperformed the CNN-NS (P<.001),
with an AUROC of 0.815 (95% CI 0.799-0.830).

Figure 5. Receiver operating characteristic curves and AUROC for the 3 CNN models on the International Skin Imaging Collaboration 2020 test set.
AUROC: area under the receiver operating characteristic curve; CNN: convolutional neural network; NS: nonstandardized; S: standardized.
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Teledermatologist Versus CNN Performance in Test
Set 1
Teledermatologists (N=4) were split into 2 groups,
teledermatologists 1 and teledermatologists 2. To evaluate the
performance of the teledermatologists against the CNN models,
we used the mean sensitivity and specificity of the 2
teledermatologist groups as a standard. On the Danish images,
the teledermatologists achieved a mean sensitivity of 82.9%
(95% CI 80.8%-85.0%) and specificity of 79.2% (95% CI
78.5%-79.9%).

The CNN models’ malignancy threshold score can be
manipulated, which can change the sensitivity and specificity
of the models. To compare the performance of the models to
each other, we first matched the sensitivity to that of the
teledermatologists (82.9%). CNN-S achieved a specificity of
72% (95% CI 66.9%-75.9%), outperforming both CNN-S2
(62%, 95% CI 55.7%-65.3%; P=.02) and CNN-NS (45%, 95%

CI 38.4-49.6; P=.001). Additionally, CNN-S2 revealed a greater
specificity than CNN-NS (P=.001). Next, we matched the
specificity of each model to that of the teledermatologists
(79.2%). CNN-S showed a sensitivity of 74.7% (95% CI
67.8%-81.8%), outperforming both CNN-S2 (71.5%; 95% CI
63.8%-78.4%; P=.77) and CNN-NS (56.3%; 95% CI
48.2%-64.2%; P=.006). Additionally, CNN-S2 revealed a
greater sensitivity than CNN-NS (P=.003).

To compare models’ performance to that of the
teledermatologists, we compared the mean sensitivity (82.9%)
and specificity (79.2%) of the teledermatologists to that of each
model. This comparison revealed that our highest performing
model (CNN-S) had a sensitivity (74.7% vs 82.9%; P=.10) and
specificity (72.0% vs 79.2%; P=.053) comparable to that of the
teledermatologists (Table 3). However, both CNN-S2 and
CNN-NS had significantly lower specificity and CNN-NS had
significantly lower sensitivity when compared to the
teledermatologists (Table 3).

Table 3. Sensitivity and specificity of the CNNa models when matched to the average performance of the teledermatologists.

P valueSensitivity when matched to specificity,
% (95% CI)

P valueSpecificity when matched to sensitivity,
% (95% CI)

Reference82.9 (76.1-88.4)Reference79.2 (74.82-82.91)Teledermatologists (average)

.1074.7 (67.2-81.3).05372 (67.4-76.3)CNN-Sb

.0771.5 (63.8-78.4).0365.2 (60.4-69.8)CNN-S2c

.0356.3 (48.2-64.2).0146.7 (41.8-51.7)CNN-NSd

aCNN: convolutional neural network.
bCNN-S: CNN standardized.
cCNN-S2: CNN standardized number 2.
dCNN-NS: CNN nonstandardized.

Effect of Image Quality on the Performance of
Teledermatologists
When taking the image quality of test set 1 into consideration,
the AUROCs of CNN-NS, CNN-S, and CNN-S2 increased as
the quality of images improved (Figure 6). CNN-NS showed
an AUROC of 0.591 (95% CI 0.389-0.778), 0.757 (95% CI
0.670-0.835), and 0.794 (95% CI 0.741-0.844) for images of

poor, fair, and good quality, respectively. CNN-S showed
AUROCs of 0.742 (95% CI 0.602-0.864; poor quality), 0.847
(95% CI 0.792-0.879; fair quality), and 0.886 (95% CI
0.817-0.909; good quality), and CNN-S2 showed AUROCs of
0.735 (95% CI 0.578-0.873; poor quality), 0.795 (95% CI
0.721-0.861; fair quality), and 0.864 (95% CI 0.820-0.909; good
quality).
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Figure 6. Impact of image quality on the performance of the teledermatologists and AUROC of the CNN Models. The receiver operating characteristic
curves and the AUROC of the CNN models and average sensitivity and 1-specificity of the teledermatologists on the Danish test set were split into (A)
poor, (B) fair, and (C) good quality images. AUROC: area under the receiver operating characteristic curve; CNN: convolutional neural network; NS:
nonstandardized; S: standardized.

Discussion

Principal Findings
Our results provide evidence that models trained on standardized
images outperform and, hence, achieve greater generalizability
than models trained on nonstandardized images. In recent years,
advances in machine learning have led to the development of
models that can compete and even outperform dermatologists
in the classification of skin cancer [7-11]. Although these models
have been shown to perform well when tested on a subset of
images from their training data set, the generalizability of these
models to images taken in different clinical settings and with
different devices is unknown.

The impact that the varying image acquisition devices and
techniques have on CNN model performance in dermatology
has not been explored in the literature to date; however, the lack

of imaging standardization in dermatology has been highlighted.
The collection, transfer, and storage of clinical and dermoscopic
images are not standardized in dermatology and have
implications on the creation of data sets for machine learning,
the reproducibility of imaging, and accessibility to relevant
metadata for the images [22,23].

The standardized models (CNN-S and CNN-S2) consistently
outperformed the nonstandardized model (CNN-NS) on all test
sets. The statistical significance was directly affected by the
number of images in the 3 test sets, with fewer images in test
set 2 resulting in a nonsignificant difference in performance.
Larger test sets will have a more accurate measure of model
performance, and this finding would need to be considered when
reporting validation results.

The ISIC holds an annual challenge that invites contestants to
create a model that is trained and tested on images provided by
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the ISIC. In the AI community, the model that wins the ISIC
challenge often holds a reputation as one of the best available.
However, if tested on external data, the same performance is
not guaranteed. If models are both trained and tested on the
same set of images, then they are subjected to overfitting and
thus poorer generalizability. The quality of a model should
therefore be judged on its performance on multiple external data
sets from varying population groups.

Several studies have looked at the performance of CNN models
compared to the performance of dermatologists. These models
perform comparably and even outperform dermatologists when
classifying skin cancers. However, it is important to note that
the images used in test sets are often taken from the same data
sets used in the training of the models [7-11]. It is important
when comparing models to dermatologists that the CNN is
externally validated. This validation provides a clearer indication
of the performance of the models in comparison to
dermatologists and their ability to generalize to external data
sets.

In our study, when tested on test set 1, the teledermatologists
outperformed all models. Interestingly, CNN-S was trained on
Australian and New Zealand patients and generalized well to
the Danish images. There was no statistical difference between
the sensitivity and specificity of the teledermatologists and the
matched sensitivity and specificity of CNN-S. It is important
to note that the Danish teledermatologists were predominantly
trained on Danish skin and had access to metadata and multiple
image viewpoints for a single lesion, which the models did not
have access to. Previous studies have shown that the addition
of metadata and inclusion of both macroscopic and dermoscopic
images of a lesion can improve the performance of the model
[24,25]. Therefore, incorporating these features into future
models will be important and may level the playing field when
assessing performance against teledermatologists’ clinical
assessment.

The Danish images used in our study were taken by general
practitioners who were required to undertake training to use the
image capture technology. However, there were some issues
with the quality of the images: some lesions were not centered,
several lesions may be present within a single image, and parts
of lesions were not included within the image frame. As the
image quality improved, the diagnostic performance of all
models and teledermatologists also increased. This finding
highlights the influence that image capture techniques and image
quality can have on CNN models and teledermatologists’
diagnostic ability. This finding is also a consideration when
designing models for integration into web-based tools or mobile

apps with consumers as end users, as the quality of images taken
by consumers on their smartphones will vary, especially in the
absence of training.

Limitations
Our study has several limitations. First, the MoleMap data set
used to train our 2 standardized CNN models was labeled by
dermatologists; however, only very few images were biopsy
proven. Given that histopathology is the gold standard for
diagnosis, some of these images may have been mislabeled,
which could have an impact on the performance of the models.
Second, in test set 1 with 569 images, we only had access to
221 biopsy-proven images. The remaining 348 images in the
test set 1 were labeled by dermatologists, which allows for the
possibility of mislabeling. Third, the quality of the images in
the training data sets (ISIC and MoleMap) and the type of image
modality may have played a part in the performance of the
models rather than the standardization of the images. It is
important to consider that the quality of the camera used in the
standardized MoleMap data set is less variable than the
nonstandardized ISIC 2019 data set, which may have led to a
discrepancy in the performance. CNN-S was trained on a
combination of dermoscopic and macroscopic images, whereas
CNN-NS and CNN-S2 were trained only on dermoscopic
images. This combination of image modalities may have had
an influence on the strength of the CNN-S model. Additionally,
the models are complex, making it difficult to understand the
process behind their decision-making (ie, a black box). This is
an important limitation of the models and of this study and will
be addressed through the incorporation of explainable AI
techniques in our future models. Finally, in test set 1, the number
of lesions in each group becomes small when divided into
images of poor, fair, and good quality. In future studies, it would
be better to evaluate a larger data set split among the quality
groups to more confidently assess the relationship between
image quality and CNN performance.

Conclusion 
In this study, CNN models trained on standardized images based
on dermoscopic and macroscopic modalities performed better
than a CNN model with the same architecture trained on
nonstandardized images when tested on external image data
sets. This finding has important implications for model
generalizability in the binary classification of skin cancer. In
test set 1, image quality also had a direct impact on the
performance of the models. For future algorithm training,
development, and registration, it is important that model
generalizability is considered through the evaluation of model
performance on external image data sets.
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