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Abstract

Background: The lack of dark skin images in pathologic skin lesions in dermatology resources hinders the accurate diagnosis
of skin lesions in people of color. Artificial intelligence applications have further disadvantaged people of color because those
applications are mainly trained with light skin color images.

Objective: The aim of this study is to develop a deep learning approach that generates realistic images of darker skin colors to
improve dermatology data diversity for various malignant and benign lesions.

Methods: We collected skin clinical images for common malignant and benign skin conditions from DermNet NZ, the International
Skin Imaging Collaboration, and Dermatology Atlas. Two deep learning methods, style transfer (ST) and deep blending (DB),
were utilized to generate images with darker skin colors using the lighter skin images. The generated images were evaluated
quantitively and qualitatively. Furthermore, a convolutional neural network (CNN) was trained using the generated images to
assess the latter’s effect on skin lesion classification accuracy.

Results: Image quality assessment showed that the ST method outperformed DB, as the former achieved a lower loss of realism
score of 0.23 (95% CI 0.19-0.27) compared to 0.63 (95% CI 0.59-0.67) for the DB method. In addition, ST achieved a higher
disease presentation with a similarity score of 0.44 (95% CI 0.40-0.49) compared to 0.17 (95% CI 0.14-0.21) for the DB method.
The qualitative assessment completed on masked participants indicated that ST-generated images exhibited high realism, whereby
62.2% (1511/2430) of the votes for the generated images were classified as real. Eight dermatologists correctly diagnosed the
lesions in the generated images with an average rate of 0.75 (360 correct diagnoses out of 480) for several malignant and benign
lesions. Finally, the classification accuracy and the area under the curve (AUC) of the model when considering the generated
images were 0.76 (95% CI 0.72-0.79) and 0.72 (95% CI 0.67-0.77), respectively, compared to the accuracy of 0.56 (95% CI
0.52-0.60) and AUC of 0.63 (95% CI 0.58-0.68) for the model without considering the generated images.

Conclusions: Deep learning approaches can generate realistic skin lesion images that improve the skin color diversity of
dermatology atlases. The diversified image bank, utilized herein to train a CNN, demonstrates the potential of developing
generalizable artificial intelligence skin cancer diagnosis applications.
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Introduction

The “white lens” phenomenon has led to the underrepresentation
of dark skin pathology images in dermatology resources [1]. A
recent analysis of several dermatology textbooks utilized to
educate dermatologists showed that dark skin images represent
merely 4% to 18% of the total number of images [2]. As a result,
it is challenging for dermatologists to properly diagnose and
treat skin pathology in people of color.

Applications utilizing artificial intelligence (AI) have been
developing at a rapid pace to aid clinicians in making diagnoses
[3,4]. Deep learning (DL), a branch of AI, has been widely
employed to develop models as accurate as specialist
dermatologists in diagnosing skin cancer [5-8] and common
skin conditions [9-12]. However, a major drawback facing the
mainstream adoption of DL applications in dermatology is the
paucity of training data diversity leading to nonrobust models
[13,14].

Han et al [15] developed a DL model to diagnose malignant
and benign skin lesions using clinical images. According to
their results, the performance of the model was highly dependent
on the diversity of the training data. Thus, DL models trained
on data with a certain skin color range could not be generalized
when tested on data collected from a different population [16].
Rahman et al [17] utilized International Skin Imaging
Collaboration (ISIC) images to train and test 5 DL models to
diagnose various malignant and benign skin lesions [18]. The
models achieved a recall of 88%, 89%, 91%, 88%, and 84%,
respectively, and the performance was further boosted by
developing an ensemble of the implemented models that
achieved a recall of 94%. ISIC images were also utilized to
develop a DL framework, DermoExpert [19], to classify up to
7 malignant and benign skin lesions. The framework was trained
and tested on ISIC-2016, ISIC-2017, and ISIC-2018 images
and achieved an AUC of 0.96, 0.95, and 0.97 for the 3 data sets,
respectively.

Although ISIC provides a large publicly available skin images
archive, the images were mainly collected from the United
States, Europe, and Australia [13], where light skin colors are
dominant. This was also confirmed by Kinyanjui et al [20], who
studied the skin tone distribution of ISIC images and showed
that the skin tone of the images primarily ranged from very light
to intermediate. Thus, the aforementioned models trained and
tested on ISIC images are not expected to be generalizable to
darker skin colors.

Motivated by this necessity, we proposed an algorithm
development and validation protocol to perform skin cancer
early detection for all skin colors [21]. In the protocol, we
considered clinical images to develop the model because clinical
images are easy to obtain, unlike dermoscopic images that
require a specialist and microscopy. In this paper, we discuss
the development and initial internal validation of skin image
generation for underrepresented skin colors in publicly available
data sets (Phases 2 and 3 of the protocol). This paper aims to
(1) generate realistic images with malignant and benign skin
lesions using 2 deep learning methods, (2) extensively evaluate
the generated images using quantitative ratings as well as

qualitative human expert and nonexpert ratings, and (3) develop
a preliminary classifier, trained with the generated images, to
categorize the images as malignant or benign and to study the
generated images’ effect on the classification accuracy.

The remaining article is organized as follows: the methods
section explains the materials and techniques utilized to generate
and evaluate the images. The subsequent section shows the
experimental results of all components involved in this work,
and the final section highlights our work limitations, discusses
the proposed work in comparison with other existing studies,
and concludes our work.

Methods

Background
In this work, we implement 2 phases of our ongoing study that
aims at leveraging deep learning to improve skin color diversity
and thus malignancy detection in any skin color using clinical
images. The first phase of our study [21] focused on quantifying
the underrepresentation of darker skin colors in dermatology
atlases by developing a skin tone categorization tool. The second
and third phases of the study, implemented herein, aim to
generate images with darker skin color, extensively assess the
generated images using several evaluation metrics, and study
the impact of the generated images on malignancy detection by
developing a classification model trained on the generated
images. Finally, the fourth phase, expected to be completed by
the end of 2022, will focus on developing an accurate
malignancy detection classification model. This model will
compile the generated images with text descriptions of skin
cancer clinical presentations in darker skin colors and use novel
deep learning architectures and ensemble learning approaches
to improve classification accuracy. In this section, we explain
the characteristics of the utilized data, the image generation
methods, and the evaluation techniques employed to achieve
the objectives of Phases 2 and 3.

Study Data Set
We collected 1701 clinical images representing several
malignant and benign skin lesions from the publicly available
skin image repositories DermNet NZ (994 images) [22],
ISIC-2018 JID editorial images (100 images) [17], and
Dermatology Atlas (607 images) [23]. Images from DermNet
NZ and ISIC (1094 images), referred to as set A, were utilized
for generating images, training, and validating the classifier.
Meanwhile, Dermatology Atlas images (607 images), referred
to as set B, were utilized to test the classifier. The distribution
of the data as malignant and benign is listed in Table 1.

The skin tone diversity of the study data sets was investigated
using our skin tone categorization tool [21]. The results,
summarized in Table 2, showed that the majority (84.1%,
n=920) of set A images were categorized as light and
intermediate skin tones, while set B was more diverse and had
varying skin tone distributions. Based on this, set B will
facilitate our evaluation of the generalizability of the
classification model developed using the generated images, as
it has variant skin tone distribution compared to the training
data.
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Table 1. Study data sets for malignant and benign class distribution [21]. Set A (n=1094): training and validation set; set B (n=607): testing set.

Set B, n (%)Set A, n (%)Tumor type

508 (83.7)634 (58)Malignant

99 (16.3)460 (42)Benign

Table 2. Skin tone distribution of the study data sets. Set A (n=1094): training and validation set; set B (n=607): testing set.

Set B, n (%)Set A, n (%)Skin tone

133 (21.9)690 (63.1)Light

198 (32.6)230 (21.0)Intermediate

131 (21.6)110 (10.1)Tan

134 (22.1)62 (5.7)Brown

11 (1.8)2 (0.18)Black

Image Generation

Style Transfer
Style transfer (ST) [24] is an image generation technique
developed based on the visual geometry group (VGG)-19
network architecture and trained on the ImageNet database with
millions of images [25]. ST utilizes 16 convolutional layers
(Conv), 5 average pooling, and no fully connected layers of the
VGG-19 architecture, as illustrated in Figure 1A. The ST
method, as demonstrated in Figure 1B, primarily works by
extracting features from content and style images denoted as
FC and FS. Then, it iteratively blends the features to generate a
new image with content and style features (GFC, GFS). The
content and style losses are calculated as the difference between
the original (FC, GFC) and the generated features (FS, GFS). The

total loss is backpropagated to the VGG network to improve
the quality of the generated image.

Since convolutional neural networks (CNNs) trained with an
adequate number of annotated data on object recognition can
extract high-level features from images independent of their
content [26], the ST method can be generalized for feature
extraction from skin lesion images. Therefore, ST can be utilized
to generate darker skin images without retraining the VGG
network. ST was utilized in this work by extracting the features
of a light skin image containing the skin pathology and a style
image with the target skin color. A new image containing an
optimized blend of both feature sets was subsequently generated,
starting from a noise image and iteratively improving by
minimizing the total loss, as illustrated in Figure 1B. The
fine-tuning details of the ST method are discussed in Multimedia
Appendix 1.

Figure 1. Style transfer (ST) in skin images. (A) VGG architecture. (B) Process of ST.

Deep Blending
Deep blending (DB) is an integration of ST and Poisson image
blending methods [27], wherein the object of interest from a

content image is transferred to the style image while minimizing
the sharp intensity and texture change between the content and
style images [28]. As in ST, DB utilizes the VGG network to
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extract the features of the input images and iteratively updates
the output image using the calculated loss functions. However,
DB works only on the object of interest from the content image
and thus requires a segmented object. Moreover, DB essentially
works on the blending region where the content object meets
the style image. Therefore, DB utilizes 3 loss functions: (1)
Poisson-based gradient loss to minimize the change of the
blending region gradient, (2) content loss to ensure the semantic
of the blending region is similar to the content object, and (3)
style loss to ensure the texture of the blending region is similar
to the style image. Finally, DB performs 2 rounds of blending;
the first round employs the content object and the style image,
and the second employs the output blended image of the first
round and the style image. The fine-tuning details of the DB
method are discussed in Multimedia Appendix 1.

Target Skin Color Selection
The target skin color is the style needed to synthesize images
in ST and DB methods. To generate images for the
underrepresented skin colors in set A, tan, brown, and black
skin colors were selected. The selection of the target style
images was determined using the individual typology angle
(ITA) calculated from the input transformed images [29].
Consequently, the angle was mapped to a skin class according
to predefined ITA ranges [30]. The ITA calculation and mapping
are explained in Multimedia Appendix 2.

Figure 2 shows the selected skin images, to be utilized as style
images, with the ITA score and skin classification. The tan skin
image was obtained from Dermatology Atlas [23], while the
brown and dark skin images were obtained from ShutterStock
[31] through a standard license.

Figure 2. Skin tone classification. ITA: individual typology angle.

Evaluation

Quantitative Evaluation
The quantitative evaluation was performed using the blind
referenceless image spatial quality evaluator (BRISQUE) and
the structural similarity index measure (SSIM) to assess realism
and disease presentation, respectively. BRISQUE is a
referenceless metric that quantifies the loss of image realism in
the presence of distortions solely using the image being assessed
[32]. This method assigns a quality score to each image that
correlates well with human quality judgment [32]. The
BRISQUE evaluation method is based on 2 main concepts: (1)
real images maintain regular statistical properties, and (2)
normalized brightness coefficients of a real image approximately
follow a Gaussian distribution. As such, image distortion can
be captured by a change in the expected statistical properties or
deviation from a Gaussian distribution (such as the generalized
Gaussian distribution [33] and the asymmetric generalized
Gaussian distribution [34], as explained in Multimedia Appendix
3).

The second metric, SSIM, compares the structure, texture, and
edges of a reference image with a modified image and provides
a similarity score [35]. SSIM was previously used to evaluate
the quality of the generated skin lesion images [36]; therefore,
SSIM is employed in this study to evaluate the similarity of the
generated images with the content image including the disease
to measure disease presentation. The SSIM calculation is
explained in Multimedia Appendix 3.

Qualitative Evaluation
For the qualitative assessment, 62 individuals with varying
backgrounds participated in evaluating the generated images.
Of the 62 participating individuals, 41 (66.1%) had no medical
background and 21 (33.9%) were medical personnel that
included 10 (47.6%) attending physicians, 2 (9.5%) physicians
in training, 1 (4.8%) nurse, and 8 (38.1%) dermatologists. The
first task was a human visual Turing test (VTT), wherein
participants (with and without a medical background) were
asked to classify the images as real or generated. The responses
of the VTT were analyzed to (1) determine the significance of
background (medical versus nonmedical personnel) and
experience in discovering the generated images and (2) estimate
the quality of the generated images by calculating the
classification accuracy, false positive rate (FPR), defined as the
ratio of generated images classified as real, and true positive
rate (TPR), defined as the ratio of real images classified as real.

The second task was a disease identification test carried out
solely by dermatologists with varying experience levels. The
responses to this test were analyzed to measure the recall (ratio
of correctly diagnosed images by dermatologists) of the real
and generated images. The 95% CI was calculated using the
Clopper-Pearson method [37] to estimate the uncertainty of the
reported results.

Preliminary Classification Evaluation
To study the effect of the generated images on skin color
diversity, the generated images were used to augment the
original images of set A to train a CNN and classify the image
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as malignant or benign. The 1094 images of set A were
randomly split, with 80% (n=875) used for training the network
and 20% (n=219) used for validation. The CNN training
followed 4 data utilization approaches, as illustrated in Figure
3: (a) use the images directly for training without performing
any augmentation; (b) augment the images with their
corresponding generated tan, brown, and black images; (c)
augment the images through geometric transformations, such
as flipping, rotating, and adding noise [38]; and (d) augment
the images with the generated and transformed images. All
models were validated on the same validation set (219 images)
and evaluated using separate test data, set B, which included
607 real images with diverse skin tone distribution, as illustrated
in Table 2.

ResNet-50 [39] pretrained on ImageNet images was utilized in
our work due to its applicability to dermatology diagnostic tasks
[40,41]. The ResNet-50 architecture consists of the 5 stages
shown in Figure 4A. For skin lesion classification, we
customized ResNet-50 by adding an average pooling layer, a
fully connected layer, and SoftMax to classify the lesions as
malignant or benign, as shown in Figure 4B. Transfer learning
was applied when training the ResNet-50, wherein we froze the
first 4 blocks of the ResNet-50 to make use of the ImageNet’s
gained weights and trained the last block with the newly added
layers to gain new weights. The customized ResNet-50 was
trained for 30 epochs and optimized using an Adam optimizer
[42] with a learning rate of 0.001. The learning rate was
incrementally reduced when there was no improvement in the
validation accuracy for 5 consecutive epochs to allow the models
to learn more optimal weights [43].

Figure 3. Image classification process. CNN: convolutional neural network; Tr: training set; Ts: test set; Vl: validation set.

Figure 4. Classification network. (A) ResNet-50 architecture and (B) the customized ResNet-50.
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Ethics Approval
All images utilized in our work were collected from publicly
available deidentified data sets. Therefore, we do not require
ethics approval.

Results

Implementation Details

All the developed models were implemented on Google
Collaboratory Pro with a NVIDIA Tesla P100 GPU. We used
Keras [44] with Tensorflow [45] to develop and optimize the
models. The average time to generate a single image using the
ST method was 46 seconds and 9 minutes using the DB method
(performing 2 rounds of image optimization). The time for
training the classification models varied based on the data
utilization approach; the average training time was 14, 34, 34,
and 47 minutes for the no augmentation, generated image
augmentation, transformed image augmentation, and all images
augmentation, respectively (Figure 3).

Quantitative Evaluation
Based on the skin tone analysis of the study data set, the 920
images categorized as light (690) and intermediate (230) skin
colors were utilized as content, and 2760 images were generated
using each method for the tan, brown, and dark style images.
Tables 3 and 4 report the average normalized BRISQUE and
average SSIM scores for each skin color using ST and DB
generation methods, respectively. As the BRISQUE measured

the loss of realism in the generated images, lower BRISQUE
scores indicated higher realism. As the SSIM measured the
similarity between the generated images and the content images,
higher SSIM scores indicated a higher similarity to the image
including the disease.

It can be seen that the ST method outperformed the DB method
in terms of realism by achieving significantly lower average
BRISQUE scores in all skin tones (Table 3). The overall
BRISQUE score of the ST method was 0.23 (95% CI 0.19-0.27)
compared to the DB score of 0.63 (95% CI 0.59-0.67). In terms
of disease presentation, ST achieved higher average SSIM scores
in all skin tones (Table 4). The overall SSIM score of the ST
method was 0.44 (95% CI 0.40-0.49) compared to 0.17 (0.95%
CI 0.14-0.21) for the DB method. Across the different tones,
there was a consistent change in the BRISQUE metric for both
methods resulting from the quality variation of the utilized style
images. Similarly, the SSIM changed across skin colors,
decreasing for ST and DB for darker colors due to the deviation
from the light skin color of the content images.

A visual qualitative comparison between the images generated
by the ST and DB methods with respect to the real images is
demonstrated in Figure 5. The ST-generated images showed
clear disease presentation while adding up the pigmentation on
the lesion region to match the darker skin color. However, the
DB-generated images included the disease region from the
content image and focused only on blending the border of the
disease with the style image. Therefore, the ST-generated images
looked more realistic compared to the DB-generated images.

Table 3. Average normalized blind referenceless image spatial quality evaluator (BRISQUE) scores of the style transfer (ST) and deep blending (DB)
methods.

BlackBrownTanMethod

0.22 (95% CI 0.15-0.29)0.35 (95% CI 0.27-0.42)0.13 (95% CI 0.08-0.19)STa

0.42 (95% CI 0.34-0.49)0.93 (95% CI 0.89-0.97)0.55 (95% CI 0.47-0.63)DBb

aST: style transfer.
bDB: deep blending.

Table 4. Average structural similarity index measure (SSIM) scores of the style transfer (ST) and deep blending (DB) methods.

BlackBrownTanMethod

0.37 (95% CI 0.30-0.45)0.44 (95% CI 0.36-0.52)0.51 (95% CI 0.43-0.59)STa

0.15 (95% CI 0.09-0.21)0.17 (95% CI 0.11-0.23)0.20 (95% CI 0.14-0.26)DBb

aST: style transfer.
bDB: deep blending.
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Figure 5. Generated images using style transfer (ST) and deep blending (DB) compared to the real images.

Qualitative Evaluation
For the human qualitative evaluation component, we conducted
2 assessments, a VTT to evaluate the realism of the generated
images and a disease identification assessment to evaluate
disease presentation. As the ST method showed superior
quantitative evaluation compared to DB, we conducted all
human evaluations on the ST images.

The human VTT was performed on 45 real and 45 generated
images to evaluate realism. A total of 54 participants, including
41 (75.9%) without a medical background and 13 (24.1%)
medical personnel, including 10 (76.9%) attending physicians,
2 (15.4%) physicians in training, and 1 (7.7%) nurse, were asked
to classify the images either as real or generated. First, we
analyzed the scores of each participant to study the significance
of the background and years of experience in identifying the
generated images correctly. The generated score (number of
generated images correctly identified) was set as the outcome,
and the real score (number of real images correctly identified),
background (medical versus nonmedical personnel), and years
of experience (0: nonmedical personnel, 1: medical personnel
with 2 to 5 years of experience, 2: medical personnel with 6 to
10 years of experience, and 3: medical personnel with more
than 10 years of experience) were predictors.

Linear regression was utilized to investigate the significance of
the predictors on the outcome. First, the generated score was
modeled using the background only, which turned out to be
insignificant (P=.96). Consequently, the generated score was
modeled using the background and years of experience, which
also showed no significance (P=.65 and .61, respectively).
Finally, the real score was integrated as a predictor, and
background and experience were not shown be to significant
factors, (P=.45 and .65, respectively); however, the real score
was significant (P<.001). The generated score in relation to the
real score and the final fitted regression model is illustrated in
Figure 6.

Consequently, we calculated the classification accuracy, FPR,
and TPR to compare the generated images with the real ones.
As illustrated in Figure 7, for all participating individuals
regardless of background, the FPR was 0.62 (1511/2430 votes;

95% CI 0.60-0.64), and the TPR was 0.60 (1449/2430 votes;
95% CI 0.58-0.62), indicating high realism of the generated
images. Moreover, there was no significant difference between
the FPR of medical personnel and nonmedical personnel, which
was 0.615 (95% CI 0.58-0.65) versus 0.624 (95% CI 0.60-0.65).
The overall accuracy was 0.49 (95% CI 0.47-0.50), indicating
that the participants had poor differentiation between generated
and real images.

The second human qualitative assessment aimed to evaluate the
accuracy of disease presentation in the generated images. We
included a total of 80 images: 20 real images and 60 ST
method–generated images (20 each for tan, brown, and black
skin colors). The diseases included are shown in Figure 8. Eight
expert dermatologists, masked to our study methodology and
image sources, participated in a survey comprising real and
generated images and chose a diagnosis most consistent with
the image presented. The average recall (rate of correctly
diagnosed lesions by dermatologists) of the real images was
0.76 (121 correct diagnoses out of 160) compared to 0.75 (360
correct diagnoses out of 480) for the generated images. Details
of the recall for each disease group, image type, and skin color
are demonstrated in Figure 8.

In Figure 8, the average recall of the generated images grouped
by skin color, tan (G-Tan), brown (G-Brown), and dark
(G-Dark), is represented by a red dot to compare to the real
images. As this figure shows, basal cell carcinoma had the
lowest average recall of the generated images compared to the
real recall. In basal cell carcinoma, the tan-generated images
had a recall of 0.81 compared to a real image recall of 0.69;
however, the brown and dark images had a significantly lower
recall of 0.44 and 0.38, respectively. Therefore, further analysis
was performed to gain a deeper insight into the disease
misdiagnosis.

The results of the recall experiment were summarized as
confusion matrices for the real, generated tan, brown, and dark
images, as shown in Figure 9A-D. The diagonal of the confusion
matrix represents the rates of correctly diagnosed diseases (true
positives), while all other numbers in the matrix represented
the misdiagnosis rates.
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It can be observed that basal cell carcinoma in the brown and
dark skin images was mainly misdiagnosed as melanoma with
a misidentification rate of 0.31 and 0.62, respectively. A closer
look at the confusion matrix of the dark generated images
(Figure 9D) reveals that intraepidermal carcinoma was also
misdiagnosed as melanoma with a misidentification rate of 0.25.

In addition, halo nevus was misidentified as melanoma with a
rate of 0.19. On the other hand, melanoma was best identified
in the dark skin color with a rate of 0.94. This high rate could
be explained by the misdiagnosis of several lesions as
melanoma. Thus, any pigmented lesion on the dark skin was
primarily misdiagnosed as melanoma.

Figure 6. Generated score versus the real score. Line represents the linear regression model with the standard error shaded.

Figure 7. Evaluation of the human Visual Turing test results, with error bars representing 95% CI. FPR: false positive rate; TPR: true positive rate.
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Figure 8. Recall of the utilized diseases, with error bars representing 95% CI. AK: actinic keratosis; AN: atypical nevi; BCC: basal cell carcinoma;
IEC: intraepidermal carcinoma; HN: halo nevus; Hem: hemangioma; Mel: melanoma; SCC: squamous cell carcinoma; SK: seborrheic keratosis; VM:
vascular malformation.

Figure 9. Confusion matrix of the real and generated images. (A) real images, (B) tan-generated images, (C) brown-generated images, and (D)
dark-generated images.
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Preliminary Classification Evaluation
A total of 4 models were developed: trained on set A images
without augmentation (model 1), trained on set A augmented
with the ST-generated images (model 2), trained on set A
augmented with geometric transformations (eg, flipping,
rotation, and noise) (model 3), and set A augmented with both
the generated and transformed images (model 4). To assess the
models’generalizability, all were tested on set B, which entirely
consisted of real images and was characterized by a different
skin color distribution compared to the training set A (Table 2).

A comparison between the accuracy and AUC of the developed
models is shown in Table 5. It can be observed that model 1 is
the least performing model because it has the least
discrimination ability characterized by the least AUC of 0.63.
On the other hand, model 2 is the best performing model with
an accuracy and AUC of 0.76 and 0.72, respectively, indicating
the significant impact of the skin color augmentation on the
model’s generalizability. With respect to model 3 (AUC 0.66),
a comparable performance to model 1 (AUC 0.63) can be
noticed, indicating that geometric transformations did not
significantly increase the model’s performance. Finally, model

4 (AUC 0.69) showed improved performance compared to
model 3 (AUC 0.66) but decreased performance compared to
model 2 (AUC 0.72), emphasizing that combining several data
augmentations did not benefit the model.

It can be concluded that augmenting the data with diverse skin
color images allowed the model to learn skin tone–related
features; thus, model 2 was robust to the variations of the skin
color in the test set. On the other hand, the geometric
transformations did not provide the model with the variability
needed to handle the deviation in skin tone distribution present
in the test set. Therefore, when combined with the generated
images, a decrease in performance was noticed, highlighting
the importance of selecting consistent image augmentations that
work to fill the gap between the training and testing data [38].

Finally, to evaluate the significance of the difference in the AUC
between the best performing model (model 2) and all other
models, the Delong test to compare 2 ROC curves [46] was
carried out. The difference in AUC between models 2 and 1
and between models 2 and 3 was significant (P<.001 and P=.03,
respectively), while there was no significant difference in the
AUC between models 2 and 4(P=.35).

Table 5. Performance of the classification models on set B.

AUCaAccuracyModels

0.63 (95% CI 0.58-0.68)0.56 (95% CI 0.52-0.60)Model 1

0.72 (95% CI 0.67-0.77)0.76 (95% CI 0.72-0.79)Model 2

0.66 (95% CI 0.62-0.71)0.56 (95% CI 0.52-0.60)Model 3

0.69 (95% CI 0.65-0.74)0.60 (95% CI 0.56-0.64)Model 4

aAUC: area under the curve.

Discussion

Principal Results
In this work, we proposed a DL-based approach to generate
realistic skin images for underrepresented skin colors using
publicly available white skin clinical images. We utilized the
pathology of light skin images and healthy dark skin images to
extract and blend disease and pigmentation features. The
employed strategy of generating darker images based on feature
blending helped to overcome the lack of dark skin images, as
the utilized image generation techniques herein were trained to
extract high-level features from images independently from
their content [26]. In terms of evaluating the quality of the
generated images, comprehensive qualitative and quantitative
approaches were developed. Given that the qualitative analyses
can be affected by the paucity of darker skin images and because
human judgment (especially the disease diagnoses test) might
vary based on skin color, we performed statistical and
mathematical quantitative analyses to address this issue. The
results emphasized that ST-generated images had high realism
and disease presentation, characterized by a lower loss of realism
and higher structural similarity scores for all skin colors
compared to those based on the DB method. Moreover, the
generated images achieved high FPR and disease recall when
compared to the real images. Finally, the generated images

contributed to improvement in the classification performance
when used to augment the training of ResNet-50 in comparison
to other augmentation strategies.

Limitations
Our work has several noteworthy limitations and areas for future
improvement. Lesion pigmentation is not the only factor that
characterizes skin cancer in people of color; thus, other disease
morphological features need to be integrated into our models.
As such, in Phase 4, text features representing skin cancer
clinical presentation on darker skin will be created based on the
published literature and consequently utilized along with the
augmented images to train the classification models. In addition,
the classification accuracy that has been investigated herein
needs to be improved; therefore, in Phase 4, several CCN
architectures and ensemble learning methods will be
implemented to boost the classification accuracy. Moreover,
images with real pathology in people of color are required to
improve model training and validation. Finally, it is worth
mentioning that other novel skin tone scales have been recently
developed, such as Google’s Monk scale [47]. Thus, our skin
tone categorization tool can benefit from investigating and
validating such new scales.
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Comparison With Prior Work
Image generation using DL has been applied in the literature to
improve data balance. The generative adversarial network
(GAN) has been utilized to generate synthetic images for several
malignant and benign lesions to overcome class imbalance [48].
The model was trained on 10,000 dermoscopic images from the
ISIC-2018 data set, and the generated images were evaluated
for realism by humans. A total of 3 dermatologists and 5 DL
experts classified a random sample of the real and generated
images as real or fake. The analysis showed that the human
classification accuracy was around 50%, meaning that the raters
were not able to clearly distinguish between real and generated
images. However, generating images with various skin colors
was not considered in the aforementioned study.

GAN was also employed to generate dermoscopic images to
mitigate data imbalance. Three GAN models were trained on
2000 dermoscopic images from the ISIC-2017 data set [49]. To
evaluate the generated images, the authors compared the
normalized color histogram of the generated images with the
training images. Their results showed a high similarity in the
distribution of both real and generated images. Despite the high
quality of the generated images, there was no focus on skin
color.

In another study [50], the authors utilized GAN to generate
clinical skin images for various skin conditions, in which the
required input features (eg, skin color and lesion location) were
manually encoded. Encoding of input features was required
during all model development phases (eg, training, validation,
and testing); thus, the developed model could not be deployed
without feature encoding. Although the images could be
generated with different skin colors using the encoding maps,
no images were generated with dark skin colors.

In terms of evaluation, the realism of the generated images in
the aforementioned study [50] was evaluated by conducting a
VTT with 10 participants, and the generated images had an
average FPR of 0.3. Meanwhile, in our work, the VTT was
conducted with 54 participants and achieved a higher FPR of
0.62. Moreover, the disease recall evaluation was conducted
with 2 dermatologists and achieved an average recall of 0.45.
However, in our work, the disease recall was assessed with 8
dermatologists and achieved a significantly higher average recall
of 0.75. Furthermore, we performed a misdiagnosis analysis,
and our findings strongly agreed with the published literature
on skin cancer misdiagnosis in people of color [51].

Conclusion
Despite the recent advances of AI in dermatology diagnosis,
the lack of skin color diversity when training AI models is a
major pitfall. Until a sufficient real-world diverse image
repository is collected, augmenting real images with generated
darker skin images is the first step to implementing robust
diagnosis models. The generated images in this work achieved
high realism and disease recall scores when compared to the
real images. In addition, the generated images augmented the
publicly available white skin images, and a classification model
was developed that outperformed the model trained without the
generated images. In our future work, which will comprise Phase
4 of this study, we will focus on overcoming our previously
mentioned limitations to boost the accuracy and robustness of
the preliminary classification model discussed herein. After
completing all study phases and addressing all discussed
limitations, the resulting model will be a tool to aid general
practitioners in diagnosing possible skin malignancy and thereby
improve the efficiency and reduce the redundancy of referrals
that expert dermatologists receive for further clinical
assessments and biopsies.
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