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Abstract

Background: Automatic skin lesion recognition has shown to be effective in increasing access to reliable dermatology evaluation;
however, most existing algorithms rely solely on images. Many diagnostic rules, including the 3-point checklist, are not considered
by artificial intelligence algorithms, which comprise human knowledge and reflect the diagnosis process of human experts.

Objective: In this paper, we aimed to develop a semisupervised model that can not only integrate the dermoscopic features and
scoring rule from the 3-point checklist but also automate the feature-annotation process.

Methods: We first trained the semisupervised model on a small, annotated data set with disease and dermoscopic feature labels
and tried to improve the classification accuracy by integrating the 3-point checklist using ranking loss function. We then used a
large, unlabeled data set with only disease label to learn from the trained algorithm to automatically classify skin lesions and
features.

Results: After adding the 3-point checklist to our model, its performance for melanoma classification improved from a mean
of 0.8867 (SD 0.0191) to 0.8943 (SD 0.0115) under 5-fold cross-validation. The trained semisupervised model can automatically
detect 3 dermoscopic features from the 3-point checklist, with best performances of 0.80 (area under the curve [AUC] 0.8380),
0.89 (AUC 0.9036), and 0.76 (AUC 0.8444), in some cases outperforming human annotators.

Conclusions: Our proposed semisupervised learning framework can help with the automatic diagnosis of skin disease based
on its ability to detect dermoscopic features and automate the label-annotation process. The framework can also help combine
semantic knowledge with a computer algorithm to arrive at a more accurate and more interpretable diagnostic result, which can
be applied to broader use cases.

(JMIR Dermatol 2022;5(4):e39113) doi: 10.2196/39113
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Introduction

Skin cancer is one of the most common cancers worldwide,
with steadily increasing incidence rates of melanoma and

nonmelanoma cancers [1]. Early detection of skin cancer is an
important prognostic factor that can improve patient survival
and overall outcomes [2]. Reliable skin cancer screening,
however, may not be readily available to all patients. For
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example, individuals who live in rural areas without local
dermatology clinics or who face barriers to attending an in-office
evaluation may not have an opportunity to have skin cancer
detected at an early stage. To address this concern, the use of
teledermatology has become increasingly popular, particularly
during the COVID-19 pandemic, which has significantly
decreased in-person dermatological evaluation [3,4]. Recently,
teledermatology has been shown to increase access to reliable
dermatology evaluation and to minimize delays in skin cancer
management [3,5]. A useful subset of teledermatology is
teledermoscopy, whereby digital images of skin lesions are
taken using a dermatoscopy or a smartphone with a
dermatoscopy attachment [6]. Studies find that the use of
dermoscopic images in teledermatology consultations improves
the sensitivity and specificity of the diagnosis [3,7]. In this way,
teledermoscopy offers itself as a promising tool to increase
patient access to reliable skin cancer screening and, thus, the
early detection of skin cancer.

The automated classification of dermoscopic images through
convolutional neural networks (CNNs) has emerged as a reliable
supplement to visual skin examination by on-site specialists in
the detection of skin cancer [8-11]. CNNs have the potential to
extend reliable skin cancer recognition to clinicians who lack
special dermatology training, including nurse practitioners,
physician assistants, and primary care physicians. In addition,
the use of CNNs enables the evaluation of skin lesions via
telemedicine. Images captured on smartphone cameras and
analyzed by similar algorithms have been shown to achieve
accuracy in identifying melanomas similar to that of
board-certified specialists [12]. Some CNN models even exhibit
greater sensitivity and specificity in diagnosing early melanoma
compared with those of inexperienced clinicians [13,14].

Artificial intelligence (AI) algorithms, however, have some
weaknesses. One weakness is interpretability and transparency
regarding how the computer arrived at its output, making it
difficult for dermatologists to trust the diagnostic results [15-17].
Another is that the current algorithms, such as the deep CNNs
used in triaging and classifying suspicious skin lesions, do not
provide the reasoning used to arrive at their given result [18].
This is often due to the complexity of the algorithm and hinders
their utility due to a lack of the trust in the diagnosis by the
patient and the physician [19].

Another limitation of AI algorithms is that a majority rely solely
on images as inputs, whereas in a clinical setting, more
information can be obtained through, for instance, palpation of
the lesion and clinical data on age and family history [20]. The
dermatologist also relies on diagnostic rules to make decisions,
such as the ABCD rule, pattern analysis, 7-point checklist, and
3-point checklist, which have been developed to standardize
the dermoscopic evaluation of melanoma and play a critical role
in skin lesion diagnosis [8,9,21-23].

Recent studies have focused on attempts to combine semantic
knowledge with the algorithm to arrive at a more accurate
diagnosis [20,24-26]. Several studies have suggested that
diagnoses derived using more than one source of input are more
accurate than are those conceived by one method alone [27-29].
One study showed that nondermatologist physicians were able

to improve their accuracy in classifying pigmented lesions when
combining their knowledge of age, sex, and localization of the
lesion with deep-learning frameworks [24]. Earlier research
added factors such as age, body site, proportion of dysplastic
nevi, naevus count, and family history of melanoma to a
computer image–analysis program and found that the addition
of clinical data significantly improved the ability to distinguish
between benign and malignant skin lesions [30]. Another study
found an improvement in the detection of basal cell carcinoma
after adding factors such as lesion size and elevation, age,
gender, and location [31]. Kawahara et al [32] conducted a
similar work when proposing a multitask deep CNN trained on
multimodal data to classify the 7-point melanoma checklist
criteria and perform a skin lesion diagnosis. Even though they
intergraded each feature from a 7-point checklist using loss
blocks, their studies did not integrate the knowledge with the
CNN architecture. One major constraint of these studies is the
lack of high-quality data related to diagnosis, for example, the
dermoscopic features that dermatologists use to diagnose skin
lesions. In this study, we address these limitations by developing
a semisupervised deep-learning framework that applies the
results learned from a small, annotated data set to a larger
unlabeled data set as well as by imitating the human diagnosis
process in our CNN structure.

In this experiment, we chose the 3-point checklist for melanoma
and melanocytic nevus as an illustration of diagnostic rules and
disease class. The 3-point checklist is easy to interpret and is
highly sensitive for the diagnosis of melanoma by nonexpert
clinicians [33]. Melanoma is well known as the most aggressive
cutaneous malignancy, accounting for approximately 75% of
all skin cancer deaths [24]. It often shares morphology with
melanocytic nevi on naked-eye examination, a technique that
yields only 60% accuracy in a melanoma diagnosis by expert
dermatologists [34]. In this regard, the International Skin
Imaging Collaboration (ISIC) organizes data challenges every
year, which focus primarily on diagnostic accuracy when
distinguishing melanoma from other malignant and benign
lesions [35]. Numerous studies that concern the use of the
3-point checklist to help classify melanomas have been
conducted [33,36,37]. In these studies, participants with varying
experience were able to score proven nonmelanoma and proven
melanoma lesions using just the 3-point checklist criteria. A
disadvantage of this method, however, is that the checklist tends
to miss thinner melanomas [37]. None of the studies related to
3-point checklist has tried to combine visual inspection with
CNN-extracted imaging features to arrive at a diagnosis. This
is also the major difference in our state-of-the-art methodology
as compared to what was seen in previous ISIC data challenges.

Combining diagnostic rules with the 3-point checklist
classification algorithm can yield benefits that improve patient
access to care and diagnostic accuracy. The proposed algorithms
have several potential application scenarios, including the
following: (1) they can automatically classify skin disease
images and generate feature labels by listing the criteria used
to categorize suspicious lesions to improve trust and acceptance
of teledermoscopy; (2) they can assist medical students to learn
and identify the features in dermoscopic images; given the
detailed evaluation of each criterion in the 3-point checklist by
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the algorithm, students can use the checklist to learn about the
fundamental parameters used to differentiate lesions as a benign
nevus or a melanoma; and (3) they can automate the process of
feature annotation; thus, fewer human annotators need to be
involved, enabling the secondary use of enormous imaging data
resources, such as the ISIC archive.

Methods

Data Set
All images from labeled and unlabeled data sets come from the
ISIC archive. “Label” here represents the 3-point checklist
feature labels, which means both “labeled” and “unlabeled”
data sets contain disease type information. For the small, labeled
data set, we selected an even distribution of melanoma and
melanocytic nevus dermoscopic images from ISIC 2019 to
annotate, using the 3-point checklist features. The large
unlabeled data set came mainly from ISIC 2020, which contains
the 584 melanoma and 5193 melanocytic nevus dermoscopic
images. To balance the data set, we added 4062 melanoma

images from ISIC 2019, excluding the images in the small,
labeled data set. We divided each data set into training and
validation sets in an 80/20 ratio and used 5-fold cross-validation,
which means the data set was divided equally into 5 subsets
and rotating in order to be the training or validation data set.
We annotated an additional 400 images as a holdout testing set.

The 3-point checklist is easy to interpret and is highly sensitive
for the diagnosis of melanoma versus melanocytic nevus. Our
algorithm evaluated dermoscopic images of pigmented lesions
based on the 3-point checklist, indicating the presence or
absence of (1) asymmetry, (2) atypical pigment network, and
(3) blue-white structures. If any one of these features was
detected from the skin lesion image, 1 point would be added on
top of the scoring for that image. The scoring range per image
is 0 to 3. These 3-point automated classification outputs can aid
in a provider’s decision to biopsy a lesion or to refer to a
specialist for a more thorough evaluation. Table 1 presents the
number of images for the skin disease categories of melanoma
and melanocytic nevus.

Table 1. Number of images for skin disease categories for labeled and unlabeled data sets.

Labeled data setUnlabeled data setDisease

4504646Melanoma

4505193Melanocytic nevus

9009839Total

Annotation of the 3-Point Checklist
There are 3 features of the 3-point checklist, which are atypical
network, asymmetry, and blue-white structure. For each feature
detected, 1 score will be added for that image. The higher the
score is (usually higher than 2), the higher the risk of melanoma
will be. If the score is lower than 1, according to the 3-point
checklist, the lesion is more likely to be benign. Our experiment
was developed based on a gold standard whereby each image
was rigorously reviewed by at least 2 annotators. If consensus
was reached, the resulting diagnosis was annotated. If not, a
third annotator would evaluate the image again. We divided the
annotation into 2 steps. First, the 3 annotators had training
sessions to develop consensus annotation guidelines. We
provided the annotators with a small image set annotated by
domain experts to annotate and evaluate. During this phase, the
annotators are allowed to discuss their different understandings.
After interrater agreement reached at least 70%, we moved to
the second step, in which they annotated images independently.
We divided the whole image data set into 3 subsets, and each
annotator was assigned 2 subsets so that every image had at
least 2 annotation results. Our final interrater agreement
Kappa-Cohen score for the second step was 0.64, which
indicated substantial agreement. If any images had different
annotation results, we brought in the third annotator, who was
not previously assigned to the image, and took a majority vote.
Overall, this is a very time-consuming process.

Image Preprocessing

Crop and Resize
Because the training data set came from 3 data sources, each
had a different resolution of the images. There could be 1 lesion
that took up the entire image or just 1 corner of the graph.
Hence, we developed a rule to crop and resize all the training
images, which improved the performance of our model.

Color Constancy
Due to the different imaging sources and illuminations, the color
of dermoscopic images varied considerably. Therefore, it was
important to calibrate the color of the images in the
preprocessing stage to reduce possible bias for the deep neural
network. Catarina et al [38] compared 4 color-constancy
algorithms (Gray World, max-RGB, Shades of Gray, and
General Gray World) to calibrate the color of dermoscopic
images for the melanoma classification system. These algorithms
improved the system performance by increasing sensitivity and
specificity, and Shades of Gray achieved better results than did
the other color-constancy algorithms. Thus, for the project, we
chose Shades of Gray as the color-constancy algorithm to
calibrate the color of the dermoscopic images before the training
stages. The calibration procedure involves 2 steps. First, the
color of the light source in the RGB color space is estimated.
Then, the image is transformed, using the estimated illuminant.

Contrast-Limited Adaptive Histogram Equalization
Contrast-Limited Adaptive Histogram Equalization was used
to improve the contrast in images. Unlike histogram
equalization, it computes several distinct sections of the image
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and uses them to redistribute the lightness values of the image.
It helps to improve the local contrast and enhance the edges of
objects in the image.

Model Architecture
We proposed a semisupervised learning framework for the
prediction of skin disease that uses a small set of labeled images
and a larger set of unlabeled images. The labeled data set
contains 900 images that were labeled with disease tags and the
3-point checklist annotation, while the unlabeled data set
contains 9839 images that have only disease tags. The
architecture of the proposed classification model is presented
in Figure 1 and contains primarily 3 components. The input

component involves the preprocessing of both labeled and
unlabeled images. The output of the input component is
streamed into 2 branches. One branch is the supervised learning
component that uses ResNet, inside which the representation
of each image is associated with the 3-point labels and the
classification tag and with the label-related ranking loss [39]
and classification loss, correspondingly. The other is the
semisupervised learning component, whereby a consistency
loss is optimized using the output from an exponential moving
average (EMA) model of the ResNet branch [40]. Finally, the
3 types of losses are combined, and coefficients are used to
balance their weights. We provide a detailed description of these
3 components in this section.

Figure 1. Architecture of the proposed semisupervised learning framework. EMA: exponential moving average; ResNet: residual neural network.

Supervised Learning + Ranking Loss
The supervised learning consists of 2 tasks, which are jointly
learned during training. One task is the classification of the skin
disease, and the other is the classification of each feature in the
3-point checklist. Using the 3-point checklist, each feature is
given a binary score of 0 or 1 in the training phase, indicating
whether it exists in the image. A total score higher than 2
suggests that the lesion is more likely to be malignant. We
incorporated the traditional cross-entropy loss to optimize the
skin disease classification part and used ranking loss to represent
the 3-point checklist knowledge. The hyperparameters for our
training models are as follows: a batch size of 128, stochastic
gradient descent optimizer, and ReduceLROnPlateau learning
rate decay (mode=“min,” factor=0.5, threshold=0.01,
patience=7, verbose=True).

Semisupervised Learning
Image annotation requires not only extensive time investment
but also domain expertise of human annotators. Inspired by the
research of Tarvainen and Valpola [40], we developed a
semisupervised scheme based on their “mean teacher”
framework to automate the feature annotation process of skin
lesion images. This model can use the information from
small-scaled labeled images and make skin feature and disease
predictions on larger unlabeled image data sets. On top of that,
we developed and integrated disease- or feature-specific loss
functions to combine knowledge from human expertise into the
model. The predicted features can be used simultaneously in

the training phase to improve the disease classification accuracy.
The supervised loss is associated with the disease label of each
image and denoted by the cross-entropy function. In the
semisupervised learning component, the mean-teacher strategy
was adopted to minimize the consistency loss between labeled
and unlabeled data sets and to average the model weights from
supervised and unsupervised learning.

Theory and Calculation

Supervised Learning + Ranking Loss
Using the ranking loss, we enforce the model to learn a
predefined diagnostic rule—the samples with higher scores are
more likely to have melanoma. The ranking loss is computed
from each pair of samples in a batch. We denote oij ≡ f(xi)– f(xj),
where f is the logit corresponding to the disease class, the

posterior Pij, and the desired target values :

Then, the cross-entropy loss function can be represented as

We compute Pij from oij using the sigmoid function as follows;
the loss function can be further rewritten as:
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Semisupervised Learning
The EMA model behaves as the teacher model on the unlabeled.
This method constrains the model to behave similarly to the
past models during the update so it can potentially find flatter
local minima and avoid singularity points where a small update
would result in large behavior change in the model. The
mean-teacher strategy proved useful in previous works, and the
consistency cost is defined as follows, where is updated based
on EMA parameters:

Finally, the ranking loss, disease supervised loss, feature
supervised loss (FSL), and consistency loss were added together
to train the model.

Results

Our models were built based on the state-of-the-art ResNet
model. We tried ResNet-18, ResNet-50, ResNet-152, and
Resnext50_32x4d, and there was no significant difference in
classification accuracies. To facilitate the training process, we
used a relatively light architecture, ResNet-18, as our baseline.

The first task is to test whether the model will increase the
classification accuracy after adding human knowledge, which
is transformed and represented in the Ranking Loss format.
Many state-of-the-art CNN model architectures have been
developed for image recognition task, some of which achieved
great performance on the skin lesion recognition task on ISIC
data sets. In a 2021 paper published by Yiming Zhang et al [41],
they reported that DenseNet [42] achieved superior performance
over other deep learning approaches on the melanoma
classification task using ISIC 2020 data set. MobileNet [43] is
another CNN model developed in the recent years, and it has
been adapted to ISIC image classification tasks in many cases
[44,45]. To choose a CNN architecture as our baseline model
and show the improvement of accuracy after combining the
human knowledge in the ranking loss format, we compared
accuracy results of the state-of-the-art CNN models mentioned

above. The comparison outcomes are shown in Table 2. We
chose ResNet as our baseline model for its better performance.
All the models were trained using a 900 labeled data set (from
Table 1). We tested the performance of pretrained baseline
model on our larger 9000-image data set using 80/20 data split.
The results are shown in Table 2. We used 5-fold
cross-validation to calculate the mean and standard deviation
of the validation accuracy.

As can be seen from the table, the pretrained baseline model
reached the same level of accuracy on the large 9000-image
data set. After adding the human knowledge of the 3-point
checklist rule, the average accuracy even improved on this basis.

The previous experiment was based on human-annotated,
3-point feature labels. The entire process, from recruiting
annotators to finally reaching agreement, took more than 2
months. Hence, we developed the semisupervised model to
automate the feature-annotation process. We combined the
generated features as human knowledge to test whether such
knowledge can help to improve the disease classification
accuracy.

To evaluate the performance of the 3-point feature classification
for our semisupervised model, we calculated the testing accuracy
and area under the receiving operating characteristic curve
(AUC) on a separate holdout testing data set that contains 100
images with annotated 3-point features and disease type. We
tested the performance for feature and disease classification on
the models shown in Table 3, for which “baseline” is the labeled
900-image data set for supervised training, followed by different
combinations of loss functions.

As seen in Table 3, the semisupervised model that combined
all 3 loss functions achieved the best accuracy for disease
classification. Adding FSL improved the performance of disease
classification by 2%. The result shows that emphasizing the
weight of “Asymmetry” feature improved the testing accuracy
of “asymmetry” by 2% and improved the classification of the
“atypical network” by 3%. Nevertheless, the accuracy of
“Blue-white structure” and disease classification has a
significant decrease.

Table 2. Five-fold cross validation results for the disease classification task.

Five-fold accuracy, mean (SD)Model

0.8733 (0.0113)MobileNetV3 (Pretrain=True)

0.8856 (0.0114)DenseNet (Pretrain=True)

0.8867 (0.0191)Baseline (ResNet-18, Pretrain=True)

0.8943 (0.0115)Baseline + Human Knowledge (RLa)

aRL: ranking loss.
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Table 3. Results for semisupervised model for disease or feature classification tasks with different loss functions—disease supervised loss (DSL),
feature supervised loss (FSL), and consistency loss (CL).

Disease, accuracy (AUC)Blue-white structure, accuracy (AUC)Atypical network, accuracy (AUC)Asymmetry, accuracy (AUCa)Model

0.54 (0.5648)0.54 (0.5620)0.53 (0.5021)0.51 (0.5760)CL

0.76 (0.8690)0.58 (0.5285)0.76 (0.6480)0.51 (0.5480)DSL

0.51 (0.5339)0.74 (0.8036)0.89 (0.9036)0.80 (0.8380)FSL

0.53 (0.5402)0.75 (0.8137)0.87 (0.8752)0.68 (0.7816)FSL+CL

0.74 (0.8418)0.76 (0.8133)0.86 (0.8602)0.76 (0.7892)DSL+FSL

0.77 (0.8389)0.47 (0.5943)0.79 (0.4340)0.53 (0.5448)DSL+CL

0.79 (0.8402)0.76 (0.8444)0.85 (0.8474)0.73 (0.8036)DSL+FSL+CL

0.69 (0.7971)0.71 (0.7951)0.88 (0.8752)0.75 (0.7932)DSL+FSLb+CL

aAUC: area under the receiving operating characteristic curve.
bWe emphasized the weight of the “Asymmetry” feature in the loss function.

Discussion

Annotation Process
Annotators in this study were medical students with no expert
training in dermatology. They evaluated images based solely
on tutorials from web-based resources and textbooks. Without
any designated training, using example images, each of the
annotators initially had a different idea of what each feature
looked like. Preliminary agreement scores may have been
improved if annotators had been given reference images from
which to learn the dermoscopic features. This finding highlights
the potential value of our algorithm as an educational tool. If
medical students can evaluate a dermoscopic image and check
their 3-point annotation against the algorithm’s validated output,
it will help them develop their ability to visually identify each
dermoscopic feature.

During the image-annotation process, there were some
uncertainties for annotators. First, the vague definition of
dermoscopic features, especially “atypical network” posed an
issue, as each annotator had a different idea of what that looks
like. This resulted in initial low agreement scores. We address
this concern by proposing an ontology that can integrate the
domain knowledge on dermoscopic features and represent the
features in a more standardized, computer-readable format.

Another uncertainty in analyzing the images was the use of
different screens with various color-display settings. One
common error that was encountered was the inability to properly
characterize blue structures when night light or blue light filters
were activated. As such options can be automatically engaged
on a schedule, however, this could lead to annotation errors.
The use of different screens led to initial disagreement among
the annotators but can be corrected by proper calibration and
ensuring that no color filter is on.

One limitation of this study was that most of the images are
taken from White skin. This has implications for whether the
algorithm can be effective in detecting melanoma in colored
skin. Training the algorithm to identify lesions in more than
just one group of skin colors would be valuable in helping to
screen a larger population of patients at risk of melanoma.

Another limitation was that the image quality could have been
decreased due to shadows, hairs, reflections, and noise, leading
to an inadequate lesion analysis, as discussed in an earlier study
[46].

Classification Models
For the first task, after combining the 3-point checklist human
knowledge, the loaded model weights from the large data set
improved the classification accuracy from an average of 0.8867
to 0.8943. This shows that the ranking loss has a positive impact
on classification accuracy. We plan to continue to work on
expanding human knowledge to develop more complicated
diagnostic rules to test their impacts on computer algorithms.

For the feature- and disease-classification task that used
semisupervised architecture, interesting findings were
discovered in Table 3. The improvement of the classification
accuracy for certain feature labels can be accomplished by
assigning a heavier weight on the corresponding feature’s loss
function, however, at the cost of scarifying the accuracy for
disease classification. Among the 3 features, blue-white structure
has a relatively low accuracy when classified without
feature-supervised loss function, the potential reason being the
unbalance of blue-white structure data set where most of them
are negative. While adding FSL is helpful for the feature
classification task, adding disease-supervised loss function could
bring down the performance of feature classification. For the
disease classification, adding FSL alone did not improve the
accuracy; however, combining consistency loss with FSL is
showing a positive effect on disease classification.

We also noticed that, during the human annotation process for
the 3-point checklist, the atypical network had the lowest
interagreement rate among the 3 annotators. For the computer
feature-classification task, however, the atypical network had
the highest classification accuracy. This suggests that the
algorithm has the advantage of learning certain image features
that might be a challenge for human experts. This shows that
human intelligence and AI can complement each other.

Because our image data set is from the ISIC archives, we also
compared the performance of our algorithm with the winner of
the ISIC 2020 leaderboard [47]. The current best performance
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has an AUC of 0.949. The AUC of the proposed model on the
400 unlabeled-image testing set (from ISIC 2020) is 0.9848
with different settings of disease category. Our 0.9848 AUC,
however, cannot be directly compared with the results from the
ISIC leaderboard, as our classification task includes only
melanoma and melanocytic nevus, whereas the ISIC challenge
has some “unknown” images. The remainder of the results in
this regard are calculated on the small 100 labeled-image testing
set, which has significant improvement over the application of
the student-teacher framework, indicating the power of
semisupervised learning.

Future Steps
We plan to implement more fine-tuned model architectures
trained from scratch so that a more advanced ensemble can be
applied by integrating architectures from submodels. Our current
experimental setting for the disease classes and rules of the
3-point checklist is only a demonstration of how we can
integrate the human thinking process into the structure of CNNs.
There are numerous diagnostic rules that are being developed,

as dermatology is thriving, and we plan to summarize all the
diagnostic rules and dermoscopic features mentioned, as well
as their relationship with skin diseases, into ontology and to
further accelerate the automation process of clinical decision
support by computer algorithms. With our trained algorithm,
we can already automate the 3-point checklist annotation process
and apply it to a wider range of image databases.

Conclusions
This study is distinctive because it combines the semantic
knowledge from the 3-point checklist with a computer algorithm
(CNN) to arrive at a more accurate and more interpretable
diagnosis. The CNN classification was conducted based on
more information than just the imaging pixels. Due to the time
and labor consumption of the image-annotation process, there
are vast imaging data sets that remain undiscovered. Our
proposed semisupervised learning framework can help automate
the annotation process, enabling the reuse of many skin-imaging
data sets, which is also beneficial to the robustness and domain
adaptation of the deep-learning model.
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