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Abstract

Background: Thus far, considerable research has been focused on classifying a lesion as benign or malignant. However, there
is a requirement for quick depth estimation of a lesion for the accurate clinical staging of the lesion. The lesion could be malignant
and quickly grow beneath the skin. While biopsy slides provide clear information on lesion depth, it is an emerging domain to
find quick and noninvasive methods to estimate depth, particularly based on 2D images.

Objective: This study proposes a novel methodology for the depth estimation and visualization of skin lesions. Current diagnostic
methods are approximate in determining how much a lesion may have proliferated within the skin. Using color gradients and
depth maps, this method will give us a definite estimate and visualization procedure for lesions and other skin issues. We aim to
generate 3D holograms of the lesion depth such that dermatologists can better diagnose melanoma.

Methods: We started by performing classification using a convolutional neural network (CNN), followed by using explainable
artificial intelligence to localize the image features responsible for the CNN output. We used the gradient class activation map
approach to perform localization of the lesion from the rest of the image. We applied computer graphics for depth estimation and
developing the 3D structure of the lesion. We used the depth from defocus method for depth estimation from single images and
Gabor filters for volumetric representation of the depth map. Our novel method, called red spot analysis, measures the degree of
infection based on how a conical hologram is constructed. We collaborated with a dermatologist to analyze the 3D hologram
output and received feedback on how this method can be introduced to clinical implementation.

Results: The neural model plus the explainable artificial intelligence algorithm achieved an accuracy of 86% in classifying the
lesions correctly as benign or malignant. For the entire pipeline, we mapped the benign and malignant cases to their conical
representations. We received exceedingly positive feedback while pitching this idea at the King Edward Memorial Institute in
India. Dermatologists considered this a potentially useful tool in the depth estimation of lesions. We received a number of ideas
for evaluating the technique before it can be introduced to the clinical scene.

Conclusions: When we map the CNN outputs (benign or malignant) to the corresponding hologram, we observe that a malignant
lesion has a higher concentration of red spots (infection) in the upper and deeper portions of the skin, and that the malignant cases
have deeper conical sections when compared with the benign cases. This proves that the qualitative results map with the initial
classification performed by the neural model. The positive feedback provided by the dermatologist suggests that the qualitative
conclusion of the method is sufficient.

(JMIR Dermatol 2024;7:e59839) doi: 10.2196/59839
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Introduction

Background
Skin cancer is the abnormal growth of skin cells that most often
develops due to exposure to UV radiation. Based on the affected
cells, the skin lesions caused by the cancer are divided into
melanocytic and nonmelanocytic [1]. Nonmelanoma skin
cancers are divided into basal cell carcinoma, squamous cell
carcinoma, and Merkel cell carcinoma. Basal cell carcinoma is
the most common type of skin cancer but is usually treatable.
On the other hand, melanocytic skin cancers are divided into
melanoma and nevus. Melanoma is a serious skin cancer that
can be fatal if not detected early. Melanoma is life-threatening
when it grows beyond the skin’s dermis, making depth an
essential factor in treating melanoma [2].

Based on how deep the cancer has penetrated the skin,
melanoma can be classified into 5 stages. Stage 0 is curable and
occurs when the lesion is on top of the skin. Stages 1, 2, and 3
are curable through surgery (or advanced surgery) and
medication; however, as the stages increase, so does the
difficulty in treating the cancer. Stage 4 is the deadliest of them
all, and it occurs when the cancer has spread into lymph nodes
and organs. There are low survival rates among patients 1.
Therefore, the early detection of melanoma is essential. We
want to be able to detect melanoma within the earlier stages [3].
Once melanoma is detected, we want to reconstruct the lesion
into a 3D holographic projection to examine the skin lesion’s
depth. Analyzing the depth tells us the stage of cancer and the
treatment required.

Our first step is to detect melanoma from a given input skin
lesion using machine learning (ML) and explainable artificial
intelligence (XAI). This study uses ML as an umbrella term for
neural models and computer vision. ML is growing rapidly, and
its excellent performance has enormous potential in many fields,
including health care. However, there is a need to explore the
interpretability of ML models. They are commonly used as a
black box that throws an output based on a specific input data
sample. However, for fields like health care, where context
plays a vital role, recent research has been explored to develop
XAI. XAI methods help explain the decisions and predictions
made by the model. This helps us improve our systems and fix
our hyperparameters while implementing the models [4]. In the
next section, we shall review some XAI methods and use them
to detect skin melanoma.

The second step is reconstructing the detected melanoma lesion
as a 3D holographic projection. This uses computer graphics
concepts like depth map estimation and surface reconstruction.
We also developed a novel method called red spot analysis to
quantify the amount of infection with increased depth into the
skin. Our final output is a conical structure of the lesion that
can be visualized and interacted with as a hologram through a
mixed reality (MR) headset. The reason for proposing the use
of MR is to blend the real and virtual worlds so that we have a
projection of the lesion within a real-world setting [5].

The summary of the major contributions of the paper are as
follows: (1) it gives the physician a tool to estimate how much

the lesion proliferated into the skin; (2) the hologram is
interactive, so certain areas can be zoomed in and studied in
detail; and (3) this enables quick and accurate diagnosis of the
patient.

Before moving on to the implementation methodology, we
review how ML and MR have impacted the treatment of skin
lesions and assisted physicians in making decisions.

ML Models and XAI for Melanoma Detection
The following study uses ML as an umbrella term that includes
computer vision and neural networks. The classification of
tumors as benign and malignant has been a familiar logistic
regression problem [6]. Numerous studies have extended ML
algorithms for the classification of skin lesions to detect
melanoma [7].

The study by [8] used a computer-aided diagnosis system to
classify the 2 classes of skin lesions—benign and malignant.
Classification is performed by 4 ML classifiers, which consist
of support vector machine, hidden naive Bayes, random forest,
and logistic regression. The paper by Hosny et al [9] presents
a skin lesions classification system based on transfer learning
and neural networks. They use the Alex-Net alongside the
softmax activation function for the multiclass classification of
3 types of lesions. They classify the segmented color images
into melanoma, nevus, and seborrheic keratosis.

Performing segmentation is often used as a preclassification
procedure in several studies. Fernandez Alcon et al [10]
performed threshold-based segmentation based on Otsu’s
algorithm. The shape, color, and texture features are extracted
from the segmentation, which are used in identifying malignant
melanoma from Clark nevi. On the other hand, Wighton et al
[11] used supervised mechanisms like the maximum a posteriori
(MAP) technique for segmentation and G-LoG
(Gaussian–Laplacian of Gaussian) for classification. Another
standard algorithm for extracting color features before applying
logistic regression is k-mean clustering and k-nearest neighbors
[12].

Apart from detecting melanoma, it is critical to detect the depth
of the cancer. The 3 common characteristics of melanoma moles
are as follows: (1) the outer covering of the moles is ragged,
asymmetrical, and coarse; (2) almost half of the moles present
do not resemble the other half of the moles; and (3) the newly
formed moles are of different shape, color, and texture from the
previously existing moles.

Based on the features of the moles, we get an idea about the
spreading level and severity of the disease. The proliferative
index is the fraction of the total active nuclei present at that
instance of time [13]. Its relation to the depth of the lesion is
yet to be studied. The study by Kumar et al [14] used the sum
rule fusion method and artificial neural network to confirm
whether the melanoma stage is critical. However, this method
does not clarify the distinction between each stage. To find a
clear difference between each stage, we need to estimate the
depth of the lesion within the skin and lymph nodes.

Although ML models have improved accuracy in melanoma
detection, there is a lack of transparency in how these systems
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obtain their results. XAI systems are used to provide
explanations to clinicians, thereby solving the issue of
transparency. There are two branches of XAI techniques [15]:
(1) intrinsically and inherently understandable algorithms, but
there could be a trade-off between performance and
interoperability, leading to bad results; and (2) retrospective
post hoc algorithms, which are often rejected in the medical
field due to the risk of confirmation bias along with the
explanations.

Chanda et al [15] developed their own multimodal XAI system
that matched the XAI explanations to the clinician’s judgments,
aligning it well with the medical task. Deep neural networks
like Alex-Net mentioned above have primarily been seen as
black-box predictors. Papanastasopoulos et al [16] used XAI
techniques like the integrated gradient attribution method and
SmoothGrad Noise Reduction algorithm to visualize the model’s
contributing features internally.

Recently, convolutional neural networks (CNNs) have achieved
excellent results in detecting and diagnosing melanoma [17].
Deep pretrained convolutional models have also been used to
extract features from skin lesions for necessary classification
[18]. Such models consist of convolutional; pooling; and dense,
fully connected layers for the required output. A paper by Zhou
et al [19] used the global average pooling layer (GAP) to support
the localization of objects in an image. They are used to retain
the spatial structure of the feature maps and identify
discriminative regions of the image. They performed the GAP
operation on the feature maps just before the final softmax
activation layer, which helped determine the critical regions of
the image. The class activation map (CAM) indicates the
discriminative region CNN uses to classify the image into its
corresponding class. It does so by projecting back the output
layer weights onto the convolutional feature map.

The primary limitation of the CAM method is that architectural
constraints bind it: only the architectures with GAP layers before
the softmax layer can use CAM visualizations. The modified
model must be retrained, which can also slightly trade off the
model’s performance. Therefore, this falls under the first
category of the XAI techniques mentioned above. A more
generalized approach proposed by [20] improved the limitations
of CAM. The gradient class activation map (GradCAM)
technique considers the target object’s gradients flowing into
the final convolutional layer to create a localization mapping
that highlights the essential regions of the target image. We use
this XAI method to highlight the areas responsible for the
classifier’s output.

3D Depth Estimation and MR Visualization of the Skin
Lesion
Depth estimation is the task of measuring each pixel relative to
the camera. Concerning skin lesions, the depth of a pixel relative
to the skin surface denotes how critical the situation is for the
patient. Depth is extracted from either single (monocular) or
multiple (stereo) views of an image. Structure from motion [21],
stereo vision [22], and depth from focus and defocus [23] are
used to estimate depth considering multiple images. In the
following study, we have a singular top view of the skin lesion
as our input for depth estimation.

The conventional methods for defocus estimation have relied
on multiple images [24]. The defocus is measured using a
deblurring process over an image set of the same scene captured
using multiple focus settings. On the other hand, with
constrained image acquisition techniques like active illumination
[25] and coded aperture method [26], we can estimate depth
using single images that focus on one view. However, their
main drawback is that they require additional illumination and
camera modification to obtain the defocus map. In Zhuo and
Sim [27], a novel technique is used to estimate the defocus
occurrence from a single image. Defocus estimation refers to
the depth estimated from a defocus blur at the edges of an image.
We obtain a full defocus occurrence map by propagating the
defocus blur amount into the inner portions of the image. Using
the following concept, we estimate the depth of the lesion from
a single image.

Consequently, once we have estimated the depth of the lesion,
we want to visualize it as a 3D volumetric structure so that it
can be analyzed correctly. The Gabor filter is a linear filter that
combines a sine wave with a Gaussian envelope. The
combination of orientation with the Gaussian function makes
it well-suited for edge detection [28], local feature extraction
[29], and texture analysis [30]. We extend the application to 3D
reconstruction by using multiple Gabor filters with different
orientation and frequency values to capture the range of
structural features. Apart from the frequency and orientation,
bandwidth is a crucial parameter that is decided based on the
characteristics of the image [31].

Once we obtain the 3D structure, we analyze the diagram and
calculate lesion volume units within varying depth ranges under
the skin. Our end goal from the testing pipeline is to have an
interactive holographic projection visualized on an MR headset.
Using MR, the physician can analyze the criticality of the
melanoma and under which stage the melanoma could be at
that time. MR headsets like the Hololens 2 (Microsoft) use the
Mixed Reality Tool Kit library onto which the holograms are
uploaded for visualization [32]. Interoperative navigation has
been performed in different surgeries using different extended
reality techniques. Recent studies involving navigation through
holograms include Porpiglia et al [33] for percutaneous kidney
puncture, Kitagawa et al [34] for laparoscopic cholecystectomy,
Cai et al [35] for craniomaxillofacial surgery, and Li et al [36]
for laparoscopic nephrectomy. Other studies have tested the
feasibility of such navigation systems; for example, a study
concerning the skin tested the feasibility of MR-based navigation
toward the sentinel node in patients with melanoma [37]. In our
study, we want to use MR as an analysis tool for estimating the
depth of the lesion within the skin.

Methods

ML and XAI for Melanoma Detection
As mentioned in the introduction, this is the first step of our
study. We detected melanoma from a skin lesion and then used
GradCAM as our XAI technique that highlights the essential
parameters of the image. We have elaborated on this further in
the following section.
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Dataset and Data Processing
For this study, we used processed skin cancer images from the
International Skin Imaging Collaboration (ISIC) archive. The
dataset is well balanced, having 1497 malignant images and
1800 benign images. The malignant images primarily included
skin lesions that proliferate under the skin and could even have
reached the lymph nodes if not treated. In our dataset, nevus
and melanoma are malignant were nature. If a particular lesion
was labeled as malignant, there was a high chance that it could
have been melanoma, making it critical to detect malignancy.
We also wanted to give an output expressing the degree of
malignancy of the lesion, which told us how close it could be
to melanoma.

We first labeled each image as “Benign” and “Malignant” since
we wanted a clear idea of what each data point represented
during training. Both image categories had the same shape
distribution of (224, 224, 3), where the area of the image was
224×224 and 3 represented the red-green-blue value. Therefore,
the model was trained on a uniform distribution, not affecting
the output label. We then split the dataset into training,
validation, and testing sets. After the split, we had 2373 samples
in the training set, 264 in the validation set, and 660 in the test
set. We used the LabelEncoder from the sklearn library to
convert “Benign” and “Malignant” annotations into categorical
labels. Figure S1 in Multimedia Appendix 1 better represented
the dataset.

Model Architecture
The “SkinCancerDetection_VGG19_Model” architecture
comprised 2 levels. First, the base model: we used a pretrained
VGG19 model with weights used for the ImageNet dataset [38].
Convolution blocks 1 and 2 had two convolution layers, while
blocks 3, 4, and 5 consisted of four. This was designed to capture
features hierarchically, where the earlier blocks captured
low-level features like edges and textures and the latter blocks
captured high-level features. Each block included one pooling

layer. The “include_top” parameter was set to false because we
wanted to exclude the top layers of the model for this specific
task. Second, the functional model: we used a model that used
Flatten on the base model’s output and then 5 dense layers with
the ReLU activation function. They performed hierarchical
feature reduction with each layer. The final dense layer is of
one unit, with the sigmoid activation function determining the
class of the output label. The functional model is depicted in
Figure S2 in Multimedia Appendix 1.

Pretrained models had been trained on large, diverse datasets,
imparting valuable knowledge about low-level features. They
also helped prevent overfitting since they are generalized on a
large dataset like ImageNet. The model loss is calculated as the
binary cross entropy, and we used the Adam optimizer for
optimization.

GradCAM for Localization
As discussed in the literature review section, GradCAM is an
intrinsically implemented XAI technique used to localize the
image’s essential parameters. We used GradCAM instead of
standard object detection methods since it provided us with a
heatmap of the localized area instead of a bounding box. This
heatmap was useful for the depth estimation of the region.
GradCAM computed gradients of the target label flowing from
the final convolution layer, followed by a weighted sum of the
feature maps in the final layer to create a localization mapping
depicting the important parameters. In our case, the localized
portion was the part of the lesion on the skin. The GradCAM
was a well-established method that we implemented in our
GradCamUtility file. We entered the “block5_conv4” attribute
into the GradCamUtility class since it was our last convolution
layer of the model. The final CAM depicted the feature maps
that contributed most to the corresponding output label. A visual
representation of the layers within a convolution block alongside
where the GradCAM algorithm was applied is depicted in Figure
1. An original image and its corresponding CAM are depicted
in Figure S3 of Multimedia Appendix 1.

Figure 1. Application of the GradCAM algorithm within the model. Conv2D: Convolutional 2-Dimensional; GradCAM: gradient class activation map.

3D Generation of Skin Lesion Depth
As discussed in the introduction, our second step was to generate
a 3D hologram that helped physicians analyze the depth of the

lesion within the skin. We did this in three steps: (1) estimating
depth from defocus occurrence; (2) 3D structure representation
of the depth; and (3) red spot analysis.
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Estimating Depth from Defocus Occurrence
As discussed in the literature review, we used the defocus
occurrence method to estimate depth when we have one input
image of a particular scene. After GradCAM, we had a blended
image with localization of the important parameters as our
output. We performed Canny Edge detection on the blended
image, which extracts the edges and boundaries of the image,
thereby giving us an outline of a localized area. We used the
threshold values of 50 and 150 to determine strong, weak, and
no edges. The following values gave us the appropriate boundary
for the specific image.

We applied the Gaussian blur over the entire image for
smoothing since it can help create coherent depth maps and
reduce the impact of noise. We applied the defocus occurrence
method, with the edges and blurred values being the 2 input
attributes of the function. Finally, we used minimum-maximum
normalization as our normalization technique on the defocus

map. Finally, we had the output defocus map. The algorithm
had been performed in the code.

3D Structure Representation of the Depth
We used Gabor filters for the 3D structure representation of the
depth [39]. The getGaborKernel of the cv2 (Computer Vision
Python) library provided a straightforward way to generate
Gabor filters with the required parameters. Tuning
hyperparameters was essential for the desirable outcome. Several
architectural decisions had to be made while using Gabor filters.
The parameters and findings were discussed in Textbox 1.

The 3D output of the Gabor filter was constructed as a scatter
plot using the Plotly3D library in Python. We got a 3D heatmap
on the “RdBu” color scale, where the red spots denoted the
deeper-lying area of the lesion. We then introduced the red spot
analysis to estimate the depth of the corresponding lesion and
constructed a 3D conical structure for the same.

Textbox 1. Parameters and findings of 3D structure representation of the depth.

• Number of Gabor filters: We used 4 at different orientations to construct a 3D structure from the 2D defocus depth map.

• Orientation: We used Gabor filters from [0, pi/4, pi/2, 3×pi/4] to analyze textures from different orientations. For 0 degrees, the textures are
analyzed horizontally, while for 90 degrees, the textures are analyzed vertically.

• Frequency: Frequency was an important parameter since it determines if we want to capture finer details. We set the frequency values for the 0-
and 90-degree filters as 0.1 since we want the finer details horizontally and vertically. We have set the frequency for the angled filters at 0.4 since
we want the filters to capture the coarse details.

• Sigma value: The sigma value represents the sigma of the Gaussian distribution. It represented the blur along a particular direction. We selected
a low value of 0.01 along both axes for a sharper, pixelated output.

• Gamma value: We selected a low gamma value of 0.5, making the output anti-isotropic for finer texture analysis.

• Size: We selected a Gabor filter of dimensions (5,5). It was a trade-off size recommended for capturing the coarse and fine details of the image.

Red Spot Analysis
The output from the Gabor filter had been constructed using
the “RdBu” color scale. The “RdBu” scenario contrasted 2
extremes where the red values indicated areas with higher
distances from the viewer, and the blue regions were closer to
the imaging device. For a given depth d, the spots above it were
blue, while those below it were the red spots. These red spots
were not literal spots present on the skin caused by secondary
infections but were considered spots in the depth map beneath
the skin surface. The red spots quantified the amount of infection
since a malignant lesion could have red spots over greater depths
as compared with benign cases. We checked the red spots for
consecutive depths and how much they decreased as we went
deeper into the skin. This showed us how the number of red
spots decreased with each depth range, and we could note where
there were 0 red spots, which signified the end of the lesion. A
sample study of the red spot analysis was done for 4 cases
depicted in Table 1. We have 2 cases that were benign with

lower probabilities of malignancy and 2 cases that were
malignant. It showed a change in the number of red spots with
depth for all 4 cases. “Below 100” represented the depth on the
color map, and the corresponding values were the red spots that
proliferated deeper than 100 units. In contrast, 0 represented
the skin’s surface.

The observations from the depicted red spot analysis are in
Textbox 2.

The final step in the pipeline was to represent the red spot values
for each depth range as conical slices. These conical slices,
when connected, represented a 3D conical structure of the lesion
beneath the skin. We developed a code that took the red spot
values for a test case as our input and gave the 3D conical
structure as output. The 3D conical structure intended to depict
the depth of the lesion and how much it had proliferated within
the skin. A physician could view the structure as an interactive
hologram on the MR headset and determine the depth and stage
of the skin cancer.
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Table 1. The red spot analysis.

99% Malignant2% Benign98% Malignant10% BenignDepth threshold

176263178262180211176770Below 0

212882605350591809Below 100

11870122212925470Below 200

65735884208235Below 300

3414283113291Below 400

174512621127Below 500

7286192Below 600

254040Below 700

132000Below 800

51000Below 900

0000Below 1000

Textbox 2. Observations from the red spot analysis.

• We observed that the red spots number decreased as we went deeper within the skin. This was because the lesion volume was more significant
in the upper layers of the skin.

• Once we got 0 red spots, we could say that the lesion had not surpassed that particular depth threshold. For example, the first test case did not
have spots above 700, signifying that the lesion depth was less than 700 units of the heatmap.

• For the malignant cases (higher probability), we noticed a significantly higher volume of spots beneath the skin depth of 100 units and onwards.

• We also saw that malignant tumors were deeper and could extend to “Below 900” depth units as seen in the fourth test case.

Ethical Considerations
Although the following research involves human records, that
is, images of lesions on their bodies, the dataset used is widely
known and used by a lot of researchers. We use the dataset
formed by the ISIC that collects and sorts these images while
maintaining the privacy of the human [40]. There is complete
approval to use this dataset after citing the source.

Results

Overview
In this section, we display the evaluation metrics of the model
on the testing data and the results from the testing pipeline
output. We consolidate and summarize all the required outputs
from the experiment.

Model Evaluation
As a part of the evaluation, we display the confusion matrix for
each label, which gives us the true positive, false positive, true
negative, and false negative values. We calculated the precision,

recall, and F1-score based on the matrix’s values. We calculated
the Matthews correlation coefficient, which is more reliable
since it gets a high score only if the prediction obtains satisfying
results in all four categories of the confusion matrix. The
Matthews correlation coefficient is a more informative score in
evaluating binary classifications than the accuracy or F1-score.
We also studied the area under the receiver operating
characteristics curve, which represents the true positive–false
positive trade-off, and the area under the precision-recall curve,
which represents the precision-recall trade-off. The evaluation
metrics for the model are depicted in Figure 2.

The conclusions about the VGG19-GradCAM model based on
the evaluation scores are mentioned in Textbox 3.

It is important to state that we have yet to record the trade-off
in the metrics due to the addition of the GradCAM calculations
after the final convolution layer. There may have been a mild
decrease in the recorded metrics due to the presence of these
manipulations. Our goal for this experiment is to estimate depth
through the 3D reconstructions of the lesion.
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Figure 2. The figure represents the evaluation metrics of the model. The confusion matrix gives us the TP, FP, FN, and TN values, allowing us to
calculate the other metrics. The AUC-ROC curve represents the TP-FP trade-off, and the AUC-PR curve represents the precision-recall trade-off.
AUC-PR: area under the precision-recall curve; AUC-ROC: area under the receiver operating characteristics curve; FN: false negative; FP: false positive;
MCC: Matthews correlation coefficient; TN: true negative; TP: true positive.

Textbox 3. Conclusions about the VGG19-GradCAM model based on the evaluation scores.

• We had a Matthews correlation coefficient score of 0.71. Since it ranges from 0 to 1 where 0 represents random guessing and 1 represents perfect
prediction, a score of 0.71 is good since it indicates a strong positive correlation between the model predictions and class labels.

• The accuracy depends on the correctly labeled data (true data), and a score of 0.86 is satisfactory.

• The precision, recall, and F1-score depend on the false and true data points, and all three are satisfactory values. We had a precision value of
0.84 and a recall of 0.86. The F1-score represents the harmonic mean (balance) between the 2 values, taking the value of 0.85.

• The receiver operating characteristics and precision-recall scores were calculated from their respective curves, taking the values of 0.86 and 0.89.
Since our dataset is mildly imbalanced toward the negative class (0 or benign), they are essential scores.

Results from the Pipeline
We display the end-to-end output of every step mentioned in
the study in Figure 3. The 4 cases correspond to those in Table
1 since we have performed the red spot analysis for them. We
trained the model over the single test data point and got the
probability of malignancy as the output. We applied GradCAM
on the original image, which gave us the “superImposedImg”
as the output and performs depth estimation, giving us the
defocus occurrence map as shown on the “viridis” color map.
The 3D output of the depth was obtained after using the Gabor
filter. After the red spot analysis, we got the final 3D conical
representation of the lesion “Conic Surface with Decreasing
Widths.” The decreasing widths represent the number of red
spots greater than a certain depth unit.

The conclusions based on the outputs of the testing pipeline in
Figure 3 are mentioned in Textbox 4.

The 3D conic surface and depth map were visualized on an MR
headset. The hologram was interactive, and we managed to see
a representation of the lesion. We see the depth with its
corresponding units beneath the skin, and we can also compare
multiple such holograms. The generated hologram looks
considerably similar in its 3D format to that of the image in the
testing pipeline. We consulted a physician for the same since
he could provide better intuition concerning the results of the
experiment. Upon collaboration, we present the dermatologist’s
feedback in the following section.
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Figure 3. The figure represents the output of the testing pipeline. We have the original image, the image after localization, the depth map, the 3D
representation of the map, and the conical representation of the hologram (left-to-right).

Textbox 4. Conclusions based on the outputs of the testing pipeline.

• Nonmalignant cases: A lighter-colored lesion is not heavily distinguished from the rest of the skin. We did not have a significant defocus occurrence
boundary as seen in the cases of Figure 3A and C. Due to the lack of a boundary, our 3D representation was mildly covered by red or blue spots.
Most spots were neutral, and our conic surface was heavily represented between the 0 and –2 z values.

• Malignant cases: They were better distinguished by the gradient class activation map (GradCAM) algorithm, and their defocus map takes a
specific boundary-like structure, as seen in cases Figure 3B and D. The 3D representation of the depth showed a significantly greater number of
colored spots. The conic structure had a significant concentration after the –2 z value, extending to a greater depth than the other 2 cases.

• The Figure 3D case had an additional black outline, so we discarded the line of red spots between the range of 135 < y < 145. Such an anomalous
line can give us faulty output and more red spots than there are.

Dermatologist Feedback
The dermatologist, TV, and his colleagues at the institute stress
the importance of ML and extended reality for the future of
diagnostic imaging. He states that the development of digital
health care is alongside applications in the two fields. Although
most work is in the research stage, he expects an increase in
usage within the next 2 to 3 years. Upon visualizing the depth
hologram and discussing research, the dermatologist could

comprehend the importance of such a method. He even
suggested that he is open to collaborating on such a method,
even at their hospital after thorough evaluation and effective
examination. He sees a lot of scope clinically, especially since
the methodology will give us a tangible method to diagnose
lesion depth. He suggests that patients can also use a working
application to assess skin lesions unassisted in everyday
scenarios.
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To evaluate the methodology, he suggests the use of this
technique on images from alternate datasets like the Human
Against Machine with 10000 Dermoscopic Images
(HAM10000). Such datasets include complex classification
requirements due to the inclusion of basal cell carcinoma,
squamous cell carcinoma, and Merkel cell carcinoma. The
methodology must function efficiently for such cases as well.
It is important to compare lesion depth scenarios with biopsy
reports since they are considered the gold standard in imaging
diagnostics. An analogy between the two methods will further
solidify the stance of this implementation and what it is trying
to achieve. After evaluation, this method can also be unified
with dermoscopy to get a paired output comprising processed
clinical images and corresponding depth holograms. We plan
to collaborate on the evaluation of this method since he believes
it could revolutionize the diagnosis of skin lesions.

He recommends generalizing this method to other health care
situations where depth estimation is crucial. Filling is an
important procedure in aesthetics to hydrate the skin surface. It
is crucial to avoid blood vessels since errors in judgment can
lead to side effects like strokes, blindness, etc. The use of
segmentation and depth maps can be used to locate blood vessels
using segmentation and 3D visualization. Angiosarcoma, Kaposi
sarcoma, and dermatofibrosarcoma protuberans are rare and
aggressive skin cancers that present as a bruise-like purplish
lesion. This can be a useful tool as current diagnostic procedures
have faltered in lesion diagnosis. This method can also be used
for depth estimation in cases like warts, seborrheic keratoses,
hypertrophic lichen planus, psoriasis, systemic sclerosis, and
morphea. We plan to collaborate on the methodology to improve
clinical outcomes and enhance patient diagnosis in depth-related
scenarios.

Discussion

Conclusions
In this study, we have provided a qualitative methodology for
the depth estimation of skin lesions. We have managed to output
a hologram that can be visualized by a physician, for diagnosing
the patient accurately. We have elaborated the entire pipeline
with an output after each step. We have used the initial
classification outputs as qualitative evaluation for the generated
holograms. We have observed that lesions classified as
malignant have greater depth and concentration than
nonmalignant cases.

Proceeding this, work needs to be done for the quantitative
evaluation of the generated hologram, as this can prove to be a
stepping-stone in skin cancer research. We have developed a
pipeline that starts with the classification and localization of
the lesion. We have used computer graphics to derive the depth
map and get a volumetric representation of the lesion. We have
developed the red spot analysis to derive the extent of infection
within each layer beneath the skin. Finally, we can map the
malignant cases to have a greater depth and concentration of
infection for each layer of depth beneath the skin. Despite being
effective in its estimation, there are a few limitations to
overcome in future research.

Very few existing literatures exist for the depth estimation of
the lesions. One such paper that we were inspired by discusses
the criticality of a particular lesion on the basis of its width,
color, and texture [13]. They were trying to determine the depth
based on the criticality. They managed to perform melanoma
staging using deep learning. We wanted to build up the same
by providing a more direct approach to determining lesion depth.
We hope that further work can be done to build upon this
particular study as well.

Limitations and Future Work
The study comprises computer vision, graphics, and an MR
headset, resulting in a few limitations along the pipeline.
Concerning the vision model, we have yet to quantify how much
the GradCAM algorithm has affected the model performance.
If the difference is significant, we must consider using
GradCAM++ or other alternate segmentation methods. Although
computer models have achieved a higher accuracy during
melanoma detection, it would be the next step to match such
accuracy while using XAI methods alongside the model. Apart
from that, it is common knowledge that datasets like ISIC are
skewed toward lighter skin tones, potentially impacting the
application of this methodology on darker skin tones. We need
to expand the dataset to contain a more diverse range of skin
lesion images, particularly images of color present on the
Fitzpatrick Skin Scale. The model can then be trained in an
unbiased manner and can be used accurately on all individuals.

The estimation of depth using the defocus method heavily relies
on the color and width of the lesion as seen on the skin surface.
Despite being malignant, we may not get an appropriate depth
map output if our lesion color closely resembles the skin tone.
This method also needs to extend to cases where the image is
zoomed out, and we can see the entire body part on which the
lesion is present. For example, one test case had the presence
of a thumb on which the lesion was present, resulting in a
slightly inaccurate depth output. We get additional red spots
due to the presence of the thumb, making the lesion deeper than
it is. Another point of consideration is the skin tone of the person
having the lesion. We would need to consider if a darker skin
tone projects an increased number of red spots for a similar type
of lesion [41].

As computer science researchers, it would not be our place to
state the importance of this study in a practical setting. To extend
this research to practical applications, it would be crucial to
know a physician’s opinion of the hologram when visualized
by them through the MR headset. Apart from that, it is also
essential to evaluate the generated holograms on the MR
headset. For its evaluation, further research must be performed
to analyze the validity and fidelity of the rendered hologram.
Upon evaluation of the method, this study can have significant
implications for melanoma treatment. While previous research
[42] provides a web-based tool for early skin cancer risk
assessment, this study furthers the field as an accurate model
for melanoma staging. Thus, this study can have significant
implications for melanoma diagnosis and treatment.
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GradCAM: gradient class activation map
HAM10000: Human Against Machine with 10000 Dermoscopic Images
ISIC: International Skin Imaging Collaboration
MAP: maximum a posteriori
ML: machine learning
MR: mixed reality
XAI: explainable artificial intelligence
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