@Article{info:doi/10.2196/50163, author="Roster, Katie and Kann, Rebecca B and Farabi, Banu and Gronbeck, Christian and Brownstone, Nicholas and Lipner, Shari R", title="Readability and Health Literacy Scores for ChatGPT-Generated Dermatology Public Education Materials: Cross-Sectional Analysis of Sunscreen and Melanoma Questions", journal="JMIR Dermatol", year="2024", month="Mar", day="6", volume="7", pages="e50163", keywords="ChatGPT; artificial intelligence; AI; LLM; LLMs; large language model; language model; language models; generative; NLP; natural language processing; health disparities; health literacy; readability; disparities; disparity; dermatology; health information; comprehensible; comprehensibility; understandability; patient education; public education; health education; online information", issn="2562-0959", doi="10.2196/50163", url="https://derma.jmir.org/2024/1/e50163", url="https://doi.org/10.2196/50163", url="http://www.ncbi.nlm.nih.gov/pubmed/38446502" }